【題目】如圖,在四棱錐P-ABCD中,底面ABCD為直角梯形,AB∥CD,AB⊥AD,PA⊥平面ABCD,E是棱PC上一點(diǎn).
(1)證明:平面ADE⊥平面PAB.
(2)若PE=4EC,O為點(diǎn)E在平面PAB上的投影,,AB=AP=2CD=2,求四棱錐P-ADEO的體積.
【答案】(1)證明見解析(2)
【解析】
(1) 由PA⊥平面ABCD,可得PA⊥AD,又AB⊥AD,則AD⊥平面PAB即可證得結(jié)論;
(2) 取AB的中點(diǎn)F可得CF⊥AB,進(jìn)而有CF⊥面PAB,即EO∥CF,可知O點(diǎn)在線段PF上,由已知可得PO=4OF即,因?yàn)?/span>,則,因?yàn)?/span>,代入即可得出結(jié)果.
(1)證明:因?yàn)?/span>PA⊥平面ABCD,平面ABCD,所以PA⊥AD,
又AB⊥AD,PA∩AB=A,所以AD⊥平面PAB,
又平面ADE,所以平面ADE⊥平面PAB;
(2)解:取AB的中點(diǎn)F,
所以CF∥AD,則CF⊥AB,
又PA⊥CF,PA∩AB=A,所以CF⊥面PAB,
則EO∥CF,即O點(diǎn)在線段PF上,
又PE=4EC,所以PO=4OF,,
則,,
,.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校組織高一、高二年級(jí)學(xué)生進(jìn)行了“紀(jì)念建國70周年”的知識(shí)競賽.從這兩個(gè)年級(jí)各隨機(jī)抽取了40名學(xué)生,對其成績進(jìn)行分析,得到了高一年級(jí)成績的頻率分布直方圖和高二年級(jí)成績的頻數(shù)分布表.
成績分組 | 頻數(shù) |
高二
(1)若成績不低于80分為“達(dá)標(biāo)”,估計(jì)高一年級(jí)知識(shí)競賽的達(dá)標(biāo)率;
(2)在抽取的學(xué)生中,從成績?yōu)?/span>的學(xué)生中隨機(jī)選取2名學(xué)生,代表學(xué)校外出參加比賽,求這2名學(xué)生來自于同一年級(jí)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(I)當(dāng)a=2時(shí),求曲線在點(diǎn)處的切線方程;
(II)設(shè)函數(shù),z.x.x.k討論的單調(diào)性并判斷有無極值,有極值時(shí)求出極值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“柯西不等式”是由數(shù)學(xué)家柯西在研究數(shù)學(xué)分析中的“流數(shù)”問題時(shí)得到的,但從歷史的角度講,該不等式應(yīng)當(dāng)稱為柯西﹣﹣布尼亞科夫斯基﹣﹣施瓦茨不等式,因?yàn)檎呛髢晌粩?shù)學(xué)家彼此獨(dú)立地在積分學(xué)中推而廣之,才將這一不等式推廣到完善的地步,在高中數(shù)學(xué)選修教材4﹣5中給出了二維形式的柯西不等式:(a2+b2)(c2+d2)≥(ac+bd)2當(dāng)且僅當(dāng)ad=bc(即)時(shí)等號(hào)成立.該不等式在數(shù)學(xué)中證明不等式和求函數(shù)最值等方面都有廣泛的應(yīng)用.根據(jù)柯西不等式可知函數(shù)的最大值及取得最大值時(shí)x的值分別為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,底面ABCD是菱形,PA=PD,∠DAB=60°.
(1)證明:AD⊥PB.
(2)若PB=,AB=PA=2,求三棱錐P-BCD的體積。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐中,平面,,,是中點(diǎn),是中點(diǎn),是線段上一動(dòng)點(diǎn).
(1)當(dāng)為中點(diǎn)時(shí),求證:平面平面;
(2)當(dāng)平面時(shí),求二面角的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com