【題目】選修4-4:坐標系與參數(shù)方程
已知曲線的極坐標方程是
,以極點為原點,極軸為
軸的正半軸建立平面直角坐標系,直線
的參數(shù)方程為
(
為參數(shù)).
(Ⅰ)寫出直線的普通方程與曲線
的直角坐標方程;
(Ⅱ)設曲線經(jīng)過伸縮變換
得到曲線
,若點
,直線
與
交與
,
,求
,
.
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,已知定點A(-4,0)、C(4,0),半徑為r的圓M的圓心M在線段AC的垂直平分線上,且在y軸右側(cè),圓M被y軸截得的弦長為 r.
(1)求圓M的方程;(2)當r變化時,是否存在定直線l與動圓M均相切?如果存在,求出定直線l的方程;如果不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=1,AD= ,P矩形內(nèi)的一點,且AP=
,若
=λ
+μ
,(λ,μ∈R),則λ+
μ的最大值為 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,某生態(tài)園將一塊三角形地的一角
開辟為水果園,已知角
為
,
的長度均大于200米,現(xiàn)在邊界
處建圍墻,在
處圍竹籬笆.
(1)若圍墻、
總長度為200米,如何可使得三角形地塊
面積最大?
(2)已知竹籬笆長為米,
段圍墻高1米,
段圍墻高2米,造價均為每平方米100元,若
,求圍墻總造價的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c,若bcosC+ccosB=asinA,則△ABC的形狀為( )
A.銳角三角形
B.直角三角形
C.鈍角三角形
D.不確定
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點是圓
上的任意一點,點
為圓
的圓心,點
與點
關于平面直角系的坐標原點對稱,線段
的垂直平分線與線段
交于點
.
(1)求動點的軌跡
的方程;
(2)若軌跡與
軸正半軸交于點
,直線
交軌跡
于
兩點,求
面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)(其中
為自然對數(shù)的底數(shù))
(1)設過點的直線
與曲線
相切于點
,求
的值;
(2)若函數(shù)的圖象與函數(shù)
的圖象在
內(nèi)有交點,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)對一切實數(shù)
都有
成立,且
.
(1)求的值;
(2)求的解析式;
(3)已知,設
:當
時,不等式
恒成立;Q:當
時,
是單調(diào)函數(shù)。如果滿足
成立的
的集合記為
,滿足Q成立的
的集合記為
,求A∩(CRB)(
為全集).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某同學使用計算器求30個數(shù)據(jù)的平均數(shù)時,錯將其中一個數(shù)據(jù)105輸入為15,那么由此求出的平均數(shù)與實際平均數(shù)的差是( )
A.35
B.﹣3
C.3
D.﹣0.5
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com