設P為雙曲線x2-
y2
12
=1
上的一點,F(xiàn)1,F(xiàn)2是該雙曲線的兩個焦點,若|PF1|=
3
2
|PF2|
,則cos∠F1PF2為______.
x2-
y2
12
=1
得a2=1,b2=12,c2=13,
設|PF1|=3d,|PF2|=2d,則|3d-2d|=2,d=2
在△F1PF2中,由余弦定理得,cos∠F1PF2=
P
F21
+P
F22
-F1F22
2PF1PF2
=
32+22-4×13
2×3×2
=-
13
4

故答案為:-
13
4
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:013

設P是圓x2+(y-2)2=1上的一個動點,Q為雙曲線x2-y2=1上的一個動點,則|PQ|的最小值為( 。

A.     B.      C.-2      D.-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設P是圓x2+(y-2)2=1上的一個動點,Q為雙曲線x2-y2=1上的一個動點,則|PQ|的最小值為(  )

A.

B.

C. -2

D. -1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

P是圓x2+(y-2)2=1上的一個動點,Q為雙曲線x2-y2=1上的一個動點,則|PQ|的最小值為(  )

A.                   B.            C.             D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設P是圓x2+(y-2)2=1上的一個動點,Q為雙曲線x2-y2=1上的一個動點,則|PQ|的最小值為(    )

A.                B.                C.              D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設P是圓x2+(y-2)2=1上的一個動點,Q為雙曲線x2-y2=1上的一個動點,則|PQ|的最小值為(    )

A.           B.            C.-2            D.-1

查看答案和解析>>

同步練習冊答案