11.回歸分析中相關(guān)指數(shù)的計(jì)算公式R2=$1-\frac{{\sum_{i=1}^n{{{({y_i}-{{\hat y}_i})}^2}}}}{{\sum_{\;}^{\;}{{{({y_i}-\overline y)}^2}}}}$.

分析 直接填入公式即可.

解答 解:回歸分析中相關(guān)指數(shù)的計(jì)算公式R2=$1-\frac{{\sum_{i=1}^n{{{({y_i}-{{\hat y}_i})}^2}}}}{{\sum_{\;}^{\;}{{{({y_i}-\overline y)}^2}}}}$.
故答案為:$1-\frac{{\sum_{i=1}^n{{{({y_i}-{{\hat y}_i})}^2}}}}{{\sum_{\;}^{\;}{{{({y_i}-\overline y)}^2}}}}$.

點(diǎn)評(píng) 本題考查回歸分析,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.求下列函數(shù)的導(dǎo)數(shù)
(1)y=(2x2+3)(3x-2)
(2)y=$\frac{lnx}{x+1}-{2}^{{\;}^{2x-1}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知△ABC的內(nèi)角A,B,C對(duì)的邊分別為a,b,c,sinA+$\sqrt{2}$sinB=2sinC,b=3,當(dāng)內(nèi)角C最大時(shí),△ABC的面積等于$\frac{9+3\sqrt{3}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知F是雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的一個(gè)焦點(diǎn),B是虛軸的一個(gè)端點(diǎn),線段BF與雙曲線相交于D,且$\overrightarrow{BF}=2\overrightarrow{BD}$,則雙曲線的離心率為$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)P(1,f(1))是曲線C:f(x)=x2+2x+3上的一點(diǎn),則曲線C過點(diǎn)P的切線方程是( 。
A.4x-y+10=0B.4x-y+2=0C.x-4y+10=0D.x-4y+2=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知函數(shù)f(x)=$\left\{\begin{array}{l}\frac{1}{x+2},-1≤x≤0\\{x}^{2}-2x,0<x≤1\end{array}\right.$,若f(2m-1)<$\frac{1}{2}$,則m的取值范圍是( 。
A.m>$\frac{1}{2}$B.m$<\frac{1}{2}$C.0$≤m<\frac{1}{2}$D.$\frac{1}{2}<m≤1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知點(diǎn)A(a,-5),B(0,10)間的距離是17,則a的值是( 。
A.8B.-8C.±4D.±8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在△ABC中,角A,B,C所對(duì)邊的長分別為a,b,c,若b=1,B=$\frac{π}{3}$,
(1)若a+c=2,解此三角形;   
(2)求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知球的直徑SC=4,A,B是該球球面上的兩點(diǎn),AB=2,∠ASC=∠BSC=45°,則棱錐S-ABC的體積為( 。
A.$\frac{2\sqrt{3}}{3}$B.$\frac{\sqrt{3}}{3}$C.$\frac{5\sqrt{3}}{3}$D.$\frac{4\sqrt{3}}{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案