若向量
a
=(sinθ,cosθ),
b
=(
3
,-1),
a
b
=1
,且θ∈(0,
π
2
)

(1)求θ;
(2)求函數(shù)f(x)=cos2x+4cosθsinx的值域.
(1)依題意:
a
b
=
3
sinθ-cosθ=1

所以2sin(θ-
π
6
)=1
,即sin(θ-
π
6
)=
1
2

又A為銳角,易得θ-
π
6
=
π
6
,故θ=
π
3

(2)由(1)可知cosθ=
1
2

所以f(x)=cos2x+2sinx=1-2sin2x+2sinx=-2(sinx-
1
2
)2+
3
2

因為x∈R,則sinx∈[-1,1]
所以,當sinx=
1
2
時,f(x)有最大值
3
2

當sinx=-1時,f(x)有最小值-3
故函數(shù)f(x)的值域是[-3,
3
2
]
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

若向量
a
=(sinθ,cosθ),
b
=(
3
,-1),
a
b
=1
,且θ∈(0,
π
2
)

(1)求θ;
(2)求函數(shù)f(x)=cos2x+4cosθsinx的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(sin(
x
2
+
π
12
),cos
x
2
),
b
=(cos(
x
2
+
π
12
),-cos
x
2
),x∈[
π
2
,π]
,函數(shù)f(x)=
a
b

(1)若cosx=-
3
5
,求函數(shù)f(x)的值;
(2)將函數(shù)f(x)的圖象按向量
c
=(m,n)(0<m<π)平移,使得平移后的圖象關于原點對稱,求向量
c

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)已知A(1,2),B(3,-6),向量
a
=(x+3,y-4)
,若 
a
=2
AB
,求x,y的值;
(2)向量
a
=(sinθ,-2)與
b
=(1,cosθ)
互相垂直,其中θ∈(0,
π
2
)
.求sinθ,cosθ的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•未央?yún)^(qū)三模)若向量
a
=(cosθ,sinθ),
b
=(
3
,-1)
,則
.
a
-
b
.
的最大值為
3
3

查看答案和解析>>

同步練習冊答案