【題目】在數(shù)列{an}中,a1+2a2++22a3+…2n﹣1an=(n2n﹣2n+1)t對任意n∈N*成立,其中常數(shù)t>0.若關于n的不等式 + + +…+ > 的解集為{n|n≥4,n∈N*},則實數(shù)m的取值范圍是 .
【答案】[ )
【解析】解:當n≥2時,a1+2a2++22a3+…2n﹣1an=(n2n﹣2n+1)t…①
得a1+2a2++22a3+…2n﹣2an﹣1=[(n﹣1)2n﹣1﹣2n﹣1+1)t…②
將①,②兩式相減,得 2n﹣1 an=(n2n﹣2n+1)t﹣[(n﹣1)2n﹣1﹣2n﹣1+1]t,
化簡,得an=nt,其中n≥2.…(5分)
因為a1=t,所以an=nt,其中n∈N*.
∴ .
∴ + + +…+ = =
又∵ ,則關于n的不等式 + + +…+ > 化簡為 .
當t>0時,考察不等式為 .的解,
由題意,知不等式1﹣ >m的解集為{n|n≥4,n∈N*},
因為函數(shù)y=1﹣ 在R上單調(diào)遞增,所以只要求1﹣ 且1﹣ ≤m即可,∴ .
所以,實數(shù)m的取值范圍是[ ).
所以答案是:[ ).
科目:高中數(shù)學 來源: 題型:
【題目】直三棱柱ABC﹣A1B1C1 中,AA1=AB=AC=1,E,F(xiàn)分別是CC1、BC 的中點,AE⊥ A1B1 , D為棱A1B1上的點.
(1)證明:DF⊥AE;
(2)是否存在一點D,使得平面DEF與平面ABC所成銳二面角的余弦值為 ?若存在,說明點D的位置,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列所給4個圖像中,與所給3件事吻合最好的順序為( )
(1.)小明離開家不久,發(fā)現(xiàn)自己把作業(yè)本忘在家里了,于是立刻返回家里取了作業(yè)本再上學;
(2.)小明騎著車一路以常速行駛,只是在途中遇到一次交通堵塞,耽擱了一些時間;
(3.)小明出發(fā)后,心情輕松,緩緩行進,后來為了趕時間開始加速.
A.(4)(1)(2)
B.(4)(2)(3)
C.(4)(1)(3)
D.(1)(2)(4)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知△ABC的三個內(nèi)角A,B,C所對的邊分別為a,b,c,向量 =(c+a,b), =(c﹣a,b﹣c),且 ⊥ .
(1)求角A的大。
(2)若a=3,求△ABC周長的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在銳角△ABC中,角A,B,C的對邊分別為a,b,c,滿足 = .
(1)求角A的大。
(2)若a= ,△ABC的面積S△ABC=3 ,求b+c的值,;
(3)若函數(shù)f(x)=2sinxcos(x+ ),求f(B)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知如圖:平行四邊形ABCD中,BC=6,正方形ADEF所在平面與平面ABCD垂直,G,H分別是DF,BE的中點.
(1)求證:GH∥平面CDE;
(2)若CD=2,DB=4 ,求四棱錐F﹣ABCD的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知三角形的頂點分別為A(﹣1,3),B(3,2),C(1,0)
(1)求BC邊上高的長度;
(2)若直線l過點C,且在l上不存在到A,B兩點的距離相等的點,求直線l的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com