【題目】用0,1,2,3,4五個數(shù)字組成五位數(shù).
(1)求沒有重復數(shù)字的五位數(shù)的個數(shù);
(2)求沒有重復數(shù)字的五位偶數(shù)的個數(shù).
【答案】(1)96(2)60
【解析】分析:(1)首位有種選法,后四位所剩四個數(shù)任意排列有種方法
根據(jù)分部乘法計數(shù)原理,可求沒有重復數(shù)字的五位數(shù)的個數(shù);
(2)由題意,分2類:末尾是0的五位偶數(shù) ; 末尾不是0的五位偶數(shù),最后根據(jù)分類加法計數(shù)原理,可求沒有重復數(shù)字的五位偶數(shù)個數(shù).
詳解:
(I)首位有種選法,后四位所剩四個數(shù)任意排列有種方法
根據(jù)分部乘法計數(shù)原理,所求五位數(shù)個數(shù)為
(II)由題意,分2類
末尾是0的五位偶數(shù)個數(shù)有個
末尾不是0的五位偶數(shù)個數(shù)有個
∴根據(jù)分類加法計數(shù)原理,沒有重復數(shù)字的五位偶數(shù)個數(shù)為
個
科目:高中數(shù)學 來源: 題型:
【題目】已知某公司為鄭州園博園生產某特許商品,該公司年固定成本為10萬元,每生產千件需另投入2 .7萬元,設該公司年內共生產該特許商品工x千件并全部銷售完;每千件的銷售收入為R(x)萬元,
且,
(I)寫出年利潤W(萬元〉關于該特許商品x(千件)的函數(shù)解析式;
〔II〕年產量為多少千件時,該公司在該特許商品的生產中所獲年利潤最大?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知平面向量 , , 滿足| |= ,| |=1, =﹣1,且 ﹣ 與 ﹣ 的夾角為 ,則| |的最大值為( )
A.
B.2
C.
D.4
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線 : 過點的直線交拋物線于兩點,設
(1)若點 關于軸的對稱點為,求證:直線經(jīng)過拋物線 的焦點;
(2)若求當最大時,直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知點P在圓柱OO1的底面⊙O上,分別為⊙O、⊙O1的直徑,且平面.
(1)求證:;
(2)若圓柱的體積,
①求三棱錐A1﹣APB的體積.
②在線段AP上是否存在一點M,使異面直線OM與所成角的余弦值為?若存在,請指出M的位置,并證明;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C1: (a>b>0)的離心率為 ,P(﹣2,1)是C1上一點.
(1)求橢圓C1的方程;
(2)設A,B,Q是P分別關于兩坐標軸及坐標原點的對稱點,平行于AB的直線l交C1于異于P、Q的兩點C,D,點C關于原點的對稱點為E.證明:直線PD、PE與y軸圍成的三角形是等腰三角形.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某興趣小組欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關系,他們分別到氣象局與某醫(yī)院抄錄了1至6月份每月10號的晝夜溫差情況與因患感冒而就診的人數(shù),得到如下資料:
日期 | 1月10日 | 2月10日 | 3月10日 | 4月10日 | 5月10日 | 6月10日 |
晝夜溫差 | 10 | 11 | 13 | 12 | 8 | 6 |
就診人數(shù)(個) | 22 | 25 | 29 | 26 | 16 | 12 |
該興趣小組確定的研究方案是:先從這六組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)求線性回歸方程,再用被選取的2組數(shù)據(jù)進行檢驗.
(Ⅰ)若選取的是1月與6月的兩組數(shù)據(jù),請根據(jù)2月至5月份的數(shù)據(jù),求出y關于x的線性回歸方程=x+;
(Ⅱ)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2人,則認為得到的線性回歸方程是理想的,試問該小組所得線性回歸方程是否理想.
附:(參考數(shù)據(jù))
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com