A. | (5-2$\sqrt{6}$,4-$\sqrt{13}$) | B. | (8-2$\sqrt{15}$,4-2$\sqrt{3}$) | C. | (5-2$\sqrt{6}$,4-2$\sqrt{3}$) | D. | (8-2$\sqrt{15}$,4-$\sqrt{13}$) |
分析 根據(jù)函數(shù)奇偶性和對稱性求出函數(shù)的周期,以及函數(shù)的解析式,利用函數(shù)與方程之間的關(guān)系,轉(zhuǎn)化為函數(shù)f(x)與y=kx有三個不同的交點,利用數(shù)形結(jié)合,以及直線和拋物線相切的等價條件,利用判別式△=0,進(jìn)行求解即可.
解答 解:∵f(x)是定義在R上的偶函數(shù)f(x)+f(2-x)=0.
∴f(x)=-f(2-x)=-f(x-2),
即f(x+2)=-f(x),
則f(x+4)=-f(x+2)=f(x),
即函數(shù)的周期是4的周期函數(shù),
若x∈[-1,0]時,則-x∈[0,1]時,此時f(-x)=x2-1=f(x),
即f(x)=x2-1,x∈[-1,0],
綜上f(x)=x2-1,x∈[-1,1],
若x∈[-2,-1]時,則x+2∈[0,1],
則由f(x+2)=-f(x),得f(x)=-f(x+2)=-[(x+2)2-1]=1-(x+2)2,x∈[-2,-1]
若x∈[1,2]時,則-x∈[-2,-1]時,
則f(-x)=1-(-x+2)2=1-(x-2)2=f(x),
即f(x)=1-(x-2)2,x∈[1,2],
即函數(shù)在一個周期[-2,2]上的解析式為f(x)=$\left\{\begin{array}{l}{1-(x+2)^{2},}&{x∈[-2,-1)}\\{{x}^{2}-1,}&{x∈[-1,1]}\\{1-(x-2)^{2},}&{x∈(1,2]}\end{array}\right.$,
若關(guān)于x的方程f(x)-kx=0恰有三個不同的實數(shù)解,
等價為f(x)=kx=0恰有三個不同的實數(shù)解,
即函數(shù)f(x)與y=kx有三個不同的交點,
作出函數(shù)f(x)和y=kx的圖象如圖:
當(dāng)x∈[1,2]時,由f(x)=1-(x-2)2=kx,得x2+(k-4)x+3=0,
由判別式△=(k-4)2-12=0得k-4=±2$\sqrt{3}$,即k=4±2$\sqrt{3}$,
由1<$-\frac{k-4}{2}$<2,解得0<k<6
則k=4-2$\sqrt{3}$,此時兩個函數(shù)有2個交點.
當(dāng)x∈[-4,-3]時,x+4∈[0,1]時,
則f(x)=f(x+4)=(x+4)2-1,x∈[-4,-3],
此時當(dāng)f(x)與y=kx相切時,即(x+4)2-1=kx,
即x2+(8-k)x+15=0,
判別式△=(8-k)2-4×15=0得k-8=±2$\sqrt{15}$,即k=8±2$\sqrt{15}$,
由-4<-$\frac{8-k}{2}$<-3,得0<k<2,
即k=8-2$\sqrt{15}$,此時兩個函數(shù)有4個交點.
故若關(guān)于x的方程f(x)-kx=0恰有三個不同的實數(shù)解,則正實數(shù)k滿足8-2$\sqrt{15}$<k<4-2$\sqrt{3}$,
故選:B
點評 本題主要考查函數(shù)與方程的應(yīng)用,根據(jù)函數(shù)奇偶性和對稱性的關(guān)系求出函數(shù)的周期性和解析式,利用函數(shù)與方程的關(guān)系轉(zhuǎn)化為兩個函數(shù)的圖象交點問題是解決本題的關(guān)鍵.綜合性較強,難度較大.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{2}$ | B. | 2 | C. | 4 | D. | 16 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1<m<2 | B. | m>2 | C. | m<-2 | D. | -2<m<2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com