已知雙曲線(xiàn)C:
x2
4
-
y2
5
=1
的右焦點(diǎn)為F,過(guò)F的直線(xiàn)l與C交于兩點(diǎn)A、B,若|AB|=5,則滿(mǎn)足條件的l的條數(shù)為
3
3
分析:分類(lèi)討論,確定雙曲線(xiàn)的幾何量,利用|AB|=5,即可得到結(jié)論.
解答:解:若AB都在右支
若AB垂直x軸,a2=4,b2=5,c2=9,∴F(3,0),∴直線(xiàn)AB方程是x=3
代入
x2
4
-
y2
5
=1
,求得y=±
5
2
,∴|AB|=5,滿(mǎn)足題意;
若A、B分別在兩支上,∵a=2,∴頂點(diǎn)距離=2+2=4<5,∴滿(mǎn)足|AB|=5的直線(xiàn)有兩條,且關(guān)于x軸對(duì)稱(chēng)
綜上,一共有3條
故答案為:3
點(diǎn)評(píng):本題主要考查了雙曲線(xiàn)的對(duì)稱(chēng)性,考查直線(xiàn)與雙曲線(xiàn)的位置關(guān)系,考查了學(xué)生分析推理和分類(lèi)討論思想的運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線(xiàn)C:
x24
-y2=1
,P為C上的任意點(diǎn).
(1)求證:點(diǎn)P到雙曲線(xiàn)C的兩條漸近線(xiàn)的距離的乘積是一個(gè)常數(shù);
(2)設(shè)點(diǎn)A的坐標(biāo)為(3,0),求|PA|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2006•西城區(qū)一模)已知雙曲線(xiàn)C:
x2
4
-y2
=1,以C的右焦點(diǎn)為圓心且與其漸近線(xiàn)相切的圓方程為
(x-
5
2+y2=4,
(x-
5
2+y2=4,
,若動(dòng)點(diǎn)A,B分別在雙曲線(xiàn)C的兩條漸近線(xiàn)上,且|AB|=2,則線(xiàn)段AB中點(diǎn)的軌跡方程為
16x2+y2=4
16x2+y2=4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•南京二模)在平面直角坐標(biāo)系xOy中,已知雙曲線(xiàn)C:
x2
4
-
y2
3
=1
.設(shè)過(guò)點(diǎn)M(0,1)的直線(xiàn)l與雙曲線(xiàn)C交于A、B兩點(diǎn),若
AM
=2
MB
,則直線(xiàn)l的斜率為
±
1
2
±
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線(xiàn)C:
x2
4
-y2=1
,F(xiàn)1,F(xiàn)2是它的兩個(gè)焦點(diǎn).
(Ⅰ)求與C有共同漸近線(xiàn)且過(guò)點(diǎn)(2,
5
)的雙曲線(xiàn)方程;
(Ⅱ)設(shè)P是雙曲線(xiàn)C上一點(diǎn),∠F1PF2=60°,求△F1PF2的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案