精英家教網 > 高中數學 > 題目詳情
等差數列{an}的前n項和為Sn,若S3=-6,S18-S15=18,則S18=( )
A.36
B.18
C.72
D.9
【答案】分析:由題意可得,s3=a1+a2+a3,S18-S15=a18+a17+a16,結合等差數列的性質可求a1+a18,代入等差數列的求和公式S18=可求
解答:解:由題意可得,s3=a1+a2+a3=-6
S18-S15=a18+a17+a16=18,
兩式相加可得,3(a1+a18)=12
∴a1+a18=4
則S18==9×4=36
故選A
點評:本題考查等差數列前n項和公式的運算,解題的關鍵是 等差數列的性質的應用.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設等差數列{an}的前n項和為Sn,若-a7<a1<-a8,則必定有( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

已知等差數列{an}的前n項和為Sn,且滿足a2=6,S5=50,數列{bn}的前n項和Tn滿足Tn+
1
2
bn=1

(Ⅰ)求數列{an}的通項公式;
(Ⅱ)求證:數列{bn}為等比數列;
(Ⅲ)記cn=
1
4
anbn
,數列{cn}的前n項和為Rn,若Rn<λ對n∈N*恒成立,求λ的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知等差數列{an}的前2006項的和S2006=2008,其中所有的偶數項的和是2,則a1003的值為
2
2

查看答案和解析>>

科目:高中數學 來源: 題型:

等差數列{an}的前n項和為Sn,a1=1;等比數列{bn}中,b1=1.若a3+S3=14,b2S2=12
(Ⅰ)求an與bn;
(Ⅱ)設cn=an+2bn(n∈N*),數列{cn}的前n項和為Tn.若對一切n∈N*不等式Tn≥λ恒成立,求λ的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

設等差數列{an}的前n項和為Sn,則a5+a6>0是S8≥S2的(  )
A、充分而不必要條件B、必要而不充分條件C、充分必要條件D、既不充分也不必要條件

查看答案和解析>>

同步練習冊答案