【題目】在平面直角坐標系中,若,,且.

(Ⅰ)求動點的軌跡的方程;

(Ⅱ)設(Ⅰ)中曲線的左、右頂點分別為、,過點的直線與曲線交于兩點,(不與重合).若直線與直線相交于點,試判斷點,是否共線,并說明理由.

【答案】(Ⅰ)(Ⅱ)見解析

【解析】

第(Ⅰ)問由且可得點到兩定點的距離之和為常數(shù),可得動點軌跡為橢圓;

第(Ⅱ)問分類討論直線的方程,斜率不存在時可直接求出所需點的坐標;斜率存在時則先設出直線方程,聯(lián)立直線方程與橢圓方程求出交點關系,再求出點,利用的關系判斷即可.

解:(Ⅰ)設,則

.

∴動點的軌跡是以為焦點的橢圓,

設其方程為,則,,即,,

.∴動點的軌跡的方程為.

(Ⅱ)①當直線的斜率不存在時,,不妨設,,

∴直線的方程為,

.

.∴點,,共線.

②當直線的斜率存在時,設,設,.

,

由題意知恒成立,故,,

∴直線的方程為

.

,

上式中的分子

.

,∴點,,共線.

綜上可知,點,共線.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】平面直角坐標系中,直線的參數(shù)方程為,(為參數(shù).以原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為.

(1)寫出直線的極坐標方程與曲線的直角坐標方程

(2)已知與直線平行的直線過點,且與曲線交于兩點,試求.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)若關于的不等式恒成立,求的取值范圍;

2)當時,求證:

3)求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2019年全國掀起了垃圾分類的熱潮,垃圾分類已經成為新時尚,同時帶動了垃圾桶的銷售.某垃圾桶生產和銷售公司通過數(shù)據分析,得到如下規(guī)律:每月生產只垃圾桶的總成本由固定成本和生產成本組成,其中固定成本為100萬元,生產成本為.

1)寫出平均每只垃圾桶所需成本關于的函數(shù)解析式,并求該公司每月生產多少只垃圾桶時,可使得平均每只所需成本費用最少?

2)假設該類型垃圾桶產銷平衡(即生產的垃圾桶都能賣掉),每只垃圾桶的售價為元,滿足.若當產量為15000只時利潤最大,此時每只售價為300元,試求的值.(利潤銷售收入成本費用)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】

討論的單調區(qū)間;

時,上的最小值為,求上的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1時,若函數(shù)恰有一個零點,求實數(shù)的取值范圍;

2, 時,對任意,有成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為調查某地區(qū)老人是否需要志愿者提供幫助,用簡單隨機抽樣方法從該地區(qū)調查了500位老年人,結果如下:

是否需要志愿 性別

需要

40

30

不需要

160

270

1)估計該地區(qū)老年人中,需要志愿者提供幫助的老年人的比例;

2)能否有99%的把握認為該地區(qū)的老年人是否需要志愿者提供幫助與性別有關?

3)根據(2)的結論,能否提供更好的調查方法來估計該地區(qū)老年人中,需要志愿幫助的老年人的比例?說明理由.

P

0.0

0.010

0.001

k

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)求函數(shù)的單調區(qū)間;

2)若關于的不等式上恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,直線l的參數(shù)方程為(t為參數(shù),0).以坐標原點為極點,x軸正半軸為極軸建立極坐標系,曲線C的極坐標方程為

(Ⅰ)寫出曲線C的直角坐標方程;

(Ⅱ)若直線l與曲線C交于A,B兩點,且AB的長度為2,求直線l的普通方程.

查看答案和解析>>

同步練習冊答案