設(shè)是定義在(0,+∞)上的單調(diào)增函數(shù),滿足: 恒有,求:
(Ⅰ)
(Ⅱ)若,求的取值范圍。
(Ⅰ)0 (Ⅱ)8<x≤9
解:(Ⅰ)∵,∴=0。
(Ⅱ),從而有≤f(9),
,∵是(0,+∞)上的增函數(shù),故
,解之得:8<x≤9。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)
(1)判斷函數(shù)的奇偶性,并加以證明;
(2)用定義證明上是減函數(shù);

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)函數(shù)
(1)當(dāng),時(shí),求所有使成立的的值。
(2)若為奇函數(shù),求證:;
(3)設(shè)常數(shù),且對任意x<0恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)= (b<0)的值域是[1,3],
(1)求b、c的值;
(2)判斷函數(shù)F(x)=lgf(x),當(dāng)x∈[-1,1]時(shí)的單調(diào)性,并證明你的結(jié)論;
(3)若t∈R,求證:lgF(|t|-|t+|)≤lg.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
已知函數(shù)
(Ⅰ)當(dāng)時(shí),解不等式;
(Ⅱ)討論函數(shù)的奇偶性,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

由函數(shù)的最大值與最小值可以得其值域?yàn)?nbsp;(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

是定義在上的增函數(shù),則不等式的解集是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知,則和      。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

,則=  ( )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案