2.函數(shù)$f(x)=\frac{1}{{\sqrt{3-x}}}$的定義域為(-∞,3).

分析 直接由分母中根式內(nèi)部的代數(shù)式大于0求解.

解答 解:由3-x>0,得x<3.
∴函數(shù)$f(x)=\frac{1}{{\sqrt{3-x}}}$的定義域為(-∞,3).
故答案為:

點評 本題考查函數(shù)的定義域及其求法,是基礎(chǔ)的計算題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

18.函數(shù)y=2+log2(x2+3)(x≥1)的值域為[4,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.已知$\overrightarrow{e}$是單位向量,向量$\overrightarrow{a}$的模為2,若$\overrightarrow{a}$=λ$\overrightarrow{e}$,則實數(shù)λ的值為±2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.數(shù)列{$\frac{2n}{n-4π}$}中的最大項是( 。
A.第11項B.第12項C.第13項D.第14項

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.在△ABC中,A=60°,AC=2,BC=$\sqrt{3}$,則AB等于1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.化簡:sin$\frac{4π}{3}$cos$\frac{5π}{6}$tan$\frac{3π}{4}$=-$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.已知sin(π+θ)+cos($\frac{π}{2}$+θ)=-2$\sqrt{3}$cos(2π-θ),則sinθcosθ-cos2θ=(  )
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.$\frac{\sqrt{3}-1}{4}$D.$\frac{1-\sqrt{3}}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.函數(shù)f(x)=2cos(ωx+$\frac{π}{3}$)(ω>0)的圖象與x軸交點的橫坐標構(gòu)成一個公差為$\frac{π}{2}$的等差數(shù)列,要得到函數(shù)g(x)=2sinωx的圖象,只需將函數(shù)f(x)的圖象( 。
A.向左平移$\frac{π}{12}$個單位長度B.向右平移$\frac{π}{6}$個單位長度
C.向右平移$\frac{5π}{12}$個單位長度D.向左平移$\frac{π}{3}$個單位長度

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知遞增等差數(shù)列{an}中,a1=1,a1,a4,a10成等比數(shù)列.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)求數(shù)列{an•3n}的前n項和Sn

查看答案和解析>>

同步練習冊答案