17.已知函數(shù)f(x)=2sinx(cosx+sinx)-1,x∈R.
(1)求f(x)的最小正周期;
(2)求f(x)的單調(diào)遞增區(qū)間.

分析 (1)利用輔助角公式求出函數(shù)f(x)的解析式進(jìn)行求解即可.
(2)結(jié)合三角函數(shù)的單調(diào)性的性質(zhì)進(jìn)行求解即可.

解答 解:(1)f(x)=2sinx(cosx+sinx)-1=2sinxcosx+2sin2x-1=sin2x-cos2x=$\sqrt{2}$sin(2x-$\frac{π}{4}$),
則f(x)的最小正周期T=$\frac{2π}{2}=π$;
(2)由2kπ-$\frac{π}{2}$≤2x-$\frac{π}{4}$≤2kπ+$\frac{π}{2}$,k∈Z,
得kπ-$\frac{π}{8}$≤x≤kπ+$\frac{3π}{8}$,k∈Z,
即函數(shù)的單調(diào)遞增區(qū)間是[kπ-$\frac{π}{8}$,kπ+$\frac{3π}{8}$],k∈Z.

點(diǎn)評(píng) 本題主要考查三角函數(shù)的圖象和性質(zhì),利用倍角公式以及輔助角公式進(jìn)行化簡(jiǎn)是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.F是橢圓$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1的右焦點(diǎn),P是其上一點(diǎn);點(diǎn)B(2,1),則|PB|+|PF|的最小值為10-$\sqrt{37}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若集合A={0,1,2},B={1,2,5},則集合A∩B的子集個(gè)數(shù)為( 。
A.2B.3C.4D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知點(diǎn)M(a,b)在直線4x-3y+c=0上,若(a-1)2+(b-1)2的最小值為4,則實(shí)數(shù)c的值為(  )
A.-21或19B.-11或9C.-21或9D.-11或19

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.在如圖所示的幾何體中,四邊形DCFE為正方形,四邊形ABCD為等腰梯形,AB∥CD,AC=$\sqrt{3}$,AB=2BC=2,且AC⊥FB.
(1)求證:平面EAC⊥平面FCB;
(2)若線段AC上存在點(diǎn)M,使AE∥平面FDM,求$\frac{AM}{MC}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.不等式x2-2x+m>0在R上恒成立的充分不必要條件是( 。
A.m>2B.0<m<1C.m>0D.m>1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.要做一個(gè)母線長(zhǎng)為30cm的圓錐形的漏斗,要使其體積最大,則其底面半徑為10$\sqrt{6}$cm.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.空間直角坐標(biāo)系中,設(shè)A(-1,2,-3),B(-1,0,2),點(diǎn)M和點(diǎn)A關(guān)于y軸對(duì)稱,則|BM|=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.命題“若x>1,則x2>1”的逆否命題是若x2≤1,則x≤1.

查看答案和解析>>

同步練習(xí)冊(cè)答案