函數(shù)數(shù)學(xué)公式的值域?yàn)開(kāi)_______.


分析:由已知中函數(shù)的解析式為齊次分式,滿足分離常數(shù)法的適用范圍,故我們可得函數(shù)的解析化為=-,進(jìn)而分析出≠0,得到函數(shù)值y的取值范圍.
解答:∵函數(shù)=-
的分子為≠0
≠0
∴函數(shù)
故函數(shù)的值域?yàn)?img class='latex' src='http://thumb.zyjl.cn/pic5/latex/136815.png' />
故答案為:
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是函數(shù)的值域,其中根據(jù)函數(shù)的解析式的特征,選擇適當(dāng)?shù)姆椒ㄊ乔笾涤虻年P(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)讀圖分析解答:設(shè)定義在閉區(qū)間[-4,4]上的函數(shù)y=f(x)的圖象如圖所示(圖中坐標(biāo)點(diǎn)都是實(shí)心點(diǎn)),完成以下幾個(gè)問(wèn)題:
(1)x∈[-2,3]時(shí),y的取值范圍是
 

(2)該函數(shù)的值域?yàn)?!--BA-->
 

(3)若y=f(x)的定義域?yàn)閇-4,4],則函數(shù)y=f(x+1)的定義域?yàn)?!--BA-->
 

(4)寫(xiě)出該函數(shù)的一個(gè)單調(diào)增區(qū)間為
 

(5)使f(x)=3(x∈[-4,4])的x的值有
 
個(gè).
(6)函數(shù)y=f(x)是區(qū)間x∈[-4,4]的
 
函數(shù).(填“奇”;“偶”或“非奇非偶”)
(7)若方程f(x)=5-3a在區(qū)間[-4,4]上有且只有三個(gè)解,求f(a)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

13、函數(shù)y=x2-4x,其中x∈[-3,3],則該函數(shù)的值域?yàn)?
[-4,21]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=
b|x|-a
(a>0,b>0)
的圖象形如漢字“囧”,故稱其為“囧函數(shù)”.下列命題正確的是
③⑤
③⑤

①“囧函數(shù)”的值域?yàn)镽;                ②“囧函數(shù)”在(0,+∞)上單調(diào)遞增;
③“囧函數(shù)”的圖象關(guān)于y軸對(duì)稱;        ④“囧函數(shù)”有兩個(gè)零點(diǎn);
⑤“囧函數(shù)”的圖象與直線y=kx+b(k≠0)的圖象至少有一個(gè)交點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列命題中:
①集合A={ x|0≤x<3且x∈N }的真子集的個(gè)數(shù)是8;
②關(guān)于x的一元二次方程x2+mx+2m+1=0一個(gè)根大于1,一個(gè)根小于1,則實(shí)數(shù)m的取值范圍m<-
2
3

③函數(shù)f(x)=x2+(3a+1)x+2a在 (-∞,4)上為減函數(shù),則實(shí)數(shù)a的取值范圍是a≤3;
④已知函數(shù)y=4x-4•2x+1(-1≤x≤2),則函數(shù)的值域?yàn)閇-
3
4
,1];
⑤定義在(-1,0)的函數(shù)f(x)=log(2a)(x+1)滿足f(x)>0的a的取值范圍是(0,
1
2
);
⑥將三個(gè)數(shù):x=20.2,y=(
1
2
)2
,z=log2
1
2
,
按從大到小排列正確的是z>x>y,其中正確的有
②⑤
②⑤

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于函數(shù)f(x)=log3(x2-2ax+3)
(1)若a=0,求函數(shù)的值域;
(2)若該函數(shù)的定義域?yàn)镽,求實(shí)數(shù)a的取值范圍;
(3)若該函數(shù)的定義域?yàn)椋?∞,1)∪(3,+∞),求實(shí)數(shù)a的值;
(4)若該函數(shù)的值域?yàn)镽,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案