在△ABC中,若tanAtanB>1,則△ABC是( )
A.銳角三角形
B.直角三角形
C.鈍角三角形
D.無法確定
【答案】
分析:利用兩角和的正切函數(shù)公式表示出tan(A+B),根據(jù)A與B的范圍以及tanAtanB>1,得到tanA和tanB都大于0,即可得到A與B都為銳角,然后判斷出tan(A+B)小于0,得到A+B為鈍角即C為銳角,所以得到此三角形為銳角三角形.
解答:解:因為A和B都為三角形中的內(nèi)角,
由tanAtanB>1,得到1-tanAtanB<0,
且得到tanA>0,tanB>0,即A,B為銳角,
所以tan(A+B)=
<0,
則A+B∈(
,π),即C都為銳角,
所以△ABC是銳角三角形.
故答案為:銳角三角形
點評:此題考查了三角形的形狀判斷,用的知識有兩角和與差的正切函數(shù)公式.解本題的思路是:根據(jù)tanAtanB>1和A與B都為三角形的內(nèi)角得到tanA和tanB都大于0,即A和B都為銳角,進而根據(jù)兩角和與差的正切函數(shù)公式得到tan(A+B)的值為負數(shù),進而得到A+B的范圍,判斷出C也為銳角.