10.已知函數(shù)f(x)=2$\sqrt{2}sin\frac{π}{8}xcos\frac{π}{8}x+2\sqrt{2}{cos^2}\frac{π}{8}x-\sqrt{2}$,x∈R.
(1)求函數(shù)f(x)的最小正周期和單調(diào)遞增區(qū)間;
(2)若函數(shù)f(x)圖象上的兩點(diǎn)P,Q的橫坐標(biāo)依次為1,5,O為坐標(biāo)原點(diǎn),求S△OPQ

分析 (1)由題意和三角函數(shù)公式化簡(jiǎn),由周期公式和整體法可得;
(2)由題意易得P和Q的坐標(biāo),進(jìn)而可得$|{OP}|=\sqrt{5},|{OQ}|=\sqrt{29}$,由向量的夾角公式和三角函數(shù)基本關(guān)系可得sin∠POQ,由三角形的面積公式可得.

解答 解:(1)由題意和三角函數(shù)公式化簡(jiǎn)可得:
$f(x)=2\sqrt{2}sin\frac{π}{8}xcos\frac{π}{8}x+\sqrt{2}(2{cos^2}\frac{π}{8}x-1)$
=$\sqrt{2}sin\frac{π}{4}x+\sqrt{2}cos\frac{π}{4}x=2sin(\frac{π}{4}x+\frac{π}{4})$,
∴函數(shù)f(x)的最小正周期為$T=\frac{2π}{{\frac{π}{4}}}=8$,
由$2kπ-\frac{π}{2}≤\frac{π}{4}x+\frac{π}{4}≤2kπ+\frac{π}{2}$(k∈Z)得8k-3≤x≤8k+1(k∈Z),
∴函數(shù)f(x)的單調(diào)遞增區(qū)間是[8k-3,8k+1](k∈Z);
(2)∵$f(1)=2sin({\frac{π}{4}+\frac{π}{4}})=2,f(5)=2sin({\frac{5π}{4}+\frac{π}{4}})=-2$,
∴P(1,2),Q(5,-2),∴$|{OP}|=\sqrt{5},|{OQ}|=\sqrt{29}$,
∴$cos∠POQ=\frac{{\overrightarrow{OP}•\overrightarrow{OQ}}}{{|{\overrightarrow{OP}}|•|{\overrightarrow{OQ}}|}}=\frac{1}{{\sqrt{5}•\sqrt{29}}}$,
∴$sin∠POQ=\sqrt{1-{{cos}^2}∠POQ}=\frac{12}{{\sqrt{5}•\sqrt{29}}}$,
∴${S_{△OPQ}}=\frac{1}{2}|{OP}|•|{OQ}|sin∠POQ=6$.

點(diǎn)評(píng) 本題考查三角函數(shù)的單調(diào)性和周期性,涉及三角形的面積的求解和向量的知識(shí),屬中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.下列函數(shù)中,既是偶函數(shù)又在區(qū)間(0,+∞)上單調(diào)遞增的函數(shù)為( 。
A.y=x-1B.y=(x+1)2C.f(x)=4x2-mx+5D.y=x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知指數(shù)函數(shù)f(x)=ax(a>0,且a≠1)圖象過點(diǎn)$(3,\frac{1}{8})$.
(1)求f(x)的解析式;
(2)利用第(1)的結(jié)論,比較a-0.1與a-0.2的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,且滿足$\frac{\sqrt{3}a}{sinA}=\frac{cosB}$.
(1)求角B的大。
(2)求$\sqrt{3}$sinA-cosC的最大值,并求取得最大值時(shí)角A,B的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知點(diǎn)P是橢圓16x2+25y2=400上一點(diǎn),且在x軸上方,F(xiàn)1,F(xiàn)2分別是橢圓的左、右焦點(diǎn),直線PF2的斜率為$-2\sqrt{2}$,則△PF1F2的面積為8$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知函數(shù)f(x)是R上的奇函數(shù),若f(1)=2則f(-1)+f(0)=-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知集合 A={x|x2-x-12>0},B={x|x≥m}.若 A∩B={x|x>4},則實(shí)數(shù)m的取值范圍是((  )
A.(-4,3)B.[-3,4]C.(-3,4)D.(-∞,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.函數(shù)f(x)=ax3-x在(-∞,+∞)內(nèi)是減函數(shù),則實(shí)數(shù)a的取值范圍是( 。
A.a≤0B.a<1C.a<2D.a<$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.若雙曲線E:$\frac{x^2}{9}-\frac{y^2}{16}$=1的左、右焦點(diǎn)分別為F1,F(xiàn)2,點(diǎn)P在雙曲線E上,且|PF1|=3,則|PF2|等于9.

查看答案和解析>>

同步練習(xí)冊(cè)答案