.(1-i)2·i等于

A.2-2i                        B.2+2i                         C.-2                    D.2

D


解析:

本題考查復(fù)數(shù)代數(shù)形式的基本運(yùn)算.可利用完全平方公式及復(fù)數(shù)代數(shù)形式的乘法運(yùn)算解決此類問題,但要注意把i2換成-1.

(1-i)2·i=(1-2i+i2)·i=(1-2i-1)·i=-2i·i=(-2)×(-1)=2.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•福建)受轎車在保修期內(nèi)維修費(fèi)等因素的影響,企業(yè)產(chǎn)生每輛轎車的利潤與該轎車首次出現(xiàn)故障的時間有關(guān),某轎車制造廠生產(chǎn)甲、乙兩種品牌轎車,保修期均為2年,現(xiàn)從該廠已售出的兩種品牌轎車中隨機(jī)抽取50輛,統(tǒng)計數(shù)據(jù)如下:
品牌          甲       乙
首次出現(xiàn)故障時間x(年) 0<x<1 1<x≤2 x>2 0<x≤2 x>2
轎車數(shù)量(輛) 2 3 45 5 45
每輛利潤(萬元) 1 2 3 1.8 2.9
將頻率視為概率,解答下列問題:
(I)從該廠生產(chǎn)的甲品牌轎車中隨機(jī)抽取一輛,求首次出現(xiàn)故障發(fā)生在保修期內(nèi)的概率;
(II)若該廠生產(chǎn)的轎車均能售出,記住生產(chǎn)一輛甲品牌轎車的利潤為X1,生產(chǎn)一輛乙品牌轎車的利潤為X2,分別求X1,X2的分布列;
(III)該廠預(yù)計今后這兩種品牌轎車銷量相當(dāng),由于資金限制,只能生產(chǎn)其中一種品牌轎車,若從經(jīng)濟(jì)效益的角度考慮,你認(rèn)為應(yīng)該產(chǎn)生哪種品牌的轎車?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
i
=(1,0),
jn
=(cos2
2
,sin
2
),
Pn
=(an,sin
2
)(n∈N+),數(shù)列{an}
滿足:a1=1,a2=1,an+2=(i+
jn
)•
Pn

(I)求證:數(shù)列{a2k-1}是等差數(shù);數(shù)列{a2k}是等比數(shù)列;(其中k∈N*);
(II)記an=f(n),對任意的正整數(shù)n≥2,不等式(cosnπ)[f(n2)-λf(2n)]≤0,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(09年長沙一中第八次月考理) (13分)貨幣是有時間價值的,現(xiàn)在的100元比一年后的100元價值要大些。例如銀行存款的年利率為5%,那么現(xiàn)在的100元一年后就變?yōu)?00(1+5%)=105元,而一年后的100元只相當(dāng)于現(xiàn)在的元,即一年后100元的現(xiàn)值為元。一般地,若銀行的年利率為i,且在近n年內(nèi)保持不變,則第n年后的a元的現(xiàn)值為元。在經(jīng)濟(jì)決策時,?紤]貨幣的時間價值,把不同時期的貨幣化為其現(xiàn)值進(jìn)行決策。某工廠年初欲購買某類型機(jī)器,有甲乙兩種型號可供選擇,有關(guān)資料如下:甲型機(jī)器購貨款為10萬元,每年年底支付的維護(hù)費(fèi)用(維修、更換零件)第一年為1000元,第二年為2000元,……(以后每年比上年增加1000元);乙型機(jī)器購貨款為6萬元,每年年底支付的維護(hù)費(fèi)用(大修理等)均為10000元。

(1)若銀行利率為i,分別求購買甲乙型機(jī)器使用n年總成本(購貨款與各年維護(hù)費(fèi)用之和)的現(xiàn)值,并求

(2)若i=5%,兩種型號機(jī)器均使用10年后就報廢,請你決策選用哪種機(jī)器(總成本現(xiàn)值較小者)。(參考數(shù)據(jù)1.05-9=0.6446,1.05-10=0.6139,1.05-11=0.5874)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:《導(dǎo)數(shù)及其應(yīng)用》2013年高三數(shù)學(xué)一輪復(fù)習(xí)單元訓(xùn)練(浙江大學(xué)附中)(解析版) 題型:選擇題

設(shè)函數(shù)f(x)在區(qū)間[a,b]上連續(xù),用分點(diǎn)a=x<x1<…<xi-1<xi…<xn=b,把區(qū)間[a,b]等分成n個小區(qū)間,在每個小區(qū)間[xi-1,xi]上任取一點(diǎn)ξi(i=1,2,…,n),作和式(其中△x為小區(qū)間的長度),那么Sn的大。 )
A.與f(x)和區(qū)間[a,b]有關(guān),與分點(diǎn)的個數(shù)n和ξi的取法無關(guān)
B.與f(x)和區(qū)間[a,b]和分點(diǎn)的個數(shù)n有關(guān),與ξi的取法無關(guān)
C.與f(x)和區(qū)間[a,b]和分點(diǎn)的個數(shù)n,ξi的取法都有關(guān)
D.與f(x)和區(qū)間[a,b]和ξi取法有關(guān),與分點(diǎn)的個數(shù)n無關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:《導(dǎo)數(shù)及其應(yīng)用》2013年高三數(shù)學(xué)一輪復(fù)習(xí)單元訓(xùn)練(北京師范大學(xué)附中)(解析版) 題型:選擇題

設(shè)函數(shù)f(x)在區(qū)間[a,b]上連續(xù),用分點(diǎn)a=x<x1<…<xi-1<xi…<xn=b,把區(qū)間[a,b]等分成n個小區(qū)間,在每個小區(qū)間[xi-1,xi]上任取一點(diǎn)ξi(i=1,2,…,n),作和式(其中△x為小區(qū)間的長度),那么Sn的大。 )
A.與f(x)和區(qū)間[a,b]有關(guān),與分點(diǎn)的個數(shù)n和ξi的取法無關(guān)
B.與f(x)和區(qū)間[a,b]和分點(diǎn)的個數(shù)n有關(guān),與ξi的取法無關(guān)
C.與f(x)和區(qū)間[a,b]和分點(diǎn)的個數(shù)n,ξi的取法都有關(guān)
D.與f(x)和區(qū)間[a,b]和ξi取法有關(guān),與分點(diǎn)的個數(shù)n無關(guān)

查看答案和解析>>

同步練習(xí)冊答案