1.已知函數(shù)f(x)=logsinβ(x2+ax+3)在區(qū)間(-∞,1)上遞增,則實數(shù)a的取值范圍是(  )
A.(-4,-2]B.[-4,-2]C.(-4,+∞)D.(-∞,-2)

分析 由對數(shù)的底數(shù)和正弦函數(shù)的性質(zhì)判斷出底數(shù)的范圍,根據(jù)條件和二次函數(shù)、對數(shù)函數(shù)、復(fù)合函數(shù)的單調(diào)性列出不等式組,求出實數(shù)a的取值范圍.

解答 解:由題意知,0<sinβ<1,
設(shè)g(x)=x2+ax+3,對稱軸x=$-\frac{a}{2}$,
因為f(x)=logsinβ(x2+ax+3)在(-∞,1)上遞增,
所以$\left\{\begin{array}{l}{1≤-\frac{a}{2}}\\{1+a+3≥0}\end{array}\right.$,解得-4≤a≤-2,
所以實數(shù)a的取值范圍是[-4,-2],
故選:B.

點評 本題考查二次函數(shù)、對數(shù)函數(shù)的性質(zhì),以及復(fù)合函數(shù)的單調(diào)性法則,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.以坐標軸為對稱軸,長、短半軸長之和為10,焦距為4$\sqrt{5}$的橢圓方程為$\frac{{x}^{2}}{36}+\frac{{y}^{2}}{16}=1$,或$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{36}=1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知數(shù)列{an}中,a1=1,an+1=n+an,則$\frac{{a}_{n}}{n}$的最小值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.函數(shù)y=$\sqrt{-sinx}$+$\sqrt{tanx}$的定義域是(  )
A.2kπ+π≤x≤2kπ+$\frac{3π}{2}$,k∈ZB.2kπ+π<x<2kπ+$\frac{3π}{2}$,k∈Z
C.2kπ+π≤x<2kπ+$\frac{3π}{2}$,k∈ZD.2kπ+π<x<2kπ+$\frac{3π}{2}$或x=kπ,k∈Z

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.求函數(shù)f(x)=$\sqrt{21+4x-{x}^{2}}-\frac{lo{g}_{5}(1-x)}{x+1}$的定義域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若直線l1:$\left\{\begin{array}{l}x=1-2t\\ y=2+kt.\end{array}$(t為參數(shù))與直線l2:$\left\{\begin{array}{l}{x=s}\\{y=1-2s}\end{array}\right.$(s為參數(shù))垂直,則k的值是( 。
A.1B.-1C.2D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知y=f(x)是定義域為R的奇函數(shù),且當(dāng)x>0時,f(x)=3x+x3-5,則函數(shù)y=f(x)的零點的個數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.設(shè)函數(shù)$f(x)=\left\{{\begin{array}{l}{x+2}\\{{x^2}}\\{2x}\end{array}}\right.,\begin{array}{l}{(x≤-1)}\\{(-1<x<2)}\\{(x≥2)}\end{array}$,則$f(\frac{1}{f(2)})$=$\frac{1}{16}$,若f(x)=3,則x=$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.設(shè)F為雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右焦點,P是雙曲線上的點,若它的漸近線上存在一點Q(第一象限內(nèi)),使得$\overrightarrow{FP}$=3$\overrightarrow{PQ}$,則雙曲線離心率的取值范圍為(1,4].

查看答案和解析>>

同步練習(xí)冊答案