求經(jīng)過點(2,3)(-2-5),且圓心在直線x-2y-3=0上的圓方程.

 

答案:
解析:

解:設所求圓的方程為:(x-a)2+(y-b)2=r2

  則依題意有:

  

  由①-②得:a+2b=-2         ④

  由③、④解得:a=,b=-

  將a=,b=-代入①得:r2=

  故所求圓方程為:(x-)2+(y+)2=

 


練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)若橢圓E1
x2
a
2
1
+
y2
b
2
1
=1
和橢圓E2
x2
a
2
2
+
y2
b
2
2
=1
滿足
a2
a1
=
b2
b1
=m
 (m>0)
,則稱這兩個橢圓相似,m稱為其相似比.
(1)求經(jīng)過點(2,
6
)
,且與橢圓
x2
4
+
y2
2
=1
相似的橢圓方程;
(2)設過原點的一條射線l分別與(1)中的兩個橢圓交于A、B兩點(其中點A在線段OB上),
|OA|+
1
|OB|
的最大值和最小值;
(3)對于真命題“過原點的一條射線分別與相似比為2的兩個橢圓C1
x2
22
+
y2
(
2
)
2
=1
和C2
x2
42
+
y2
(2
2
)
2
=1
交于A、B兩點,P為線段AB上的一點,若|OA|、|OP|、|OB|成等差數(shù)列,則點P的軌跡方程為
x2
32
+
y2
(
3
2
2
)
2
=1
”.請用推廣或類比的方法提出類似的一個真命題,并給予證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)求經(jīng)過點P(-3,2
7
)和Q(-6
2
,-7)的雙曲線的標準方程;
(2)已知雙曲線與橢圓
x2
27
-
y2
36
=1有共同的焦點,且與橢圓相交,一個交點A的縱坐標為4,求雙曲線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求適合下列條件的橢圓標準方程:
(1)焦點在y上,且經(jīng)過兩點(0,2)和(1,0);
(2)經(jīng)過點(
6
3
3
)
和點(
2
2
3
,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:044

求經(jīng)過點(2,3)(-2,-5),且圓心在直線x-2y-3=0上的圓方程.

 

查看答案和解析>>

同步練習冊答案