如圖,△ABC為正三角形,頂點A在x軸上,A在邊BC的右側,∠BAC的平分線在x軸上,求邊AB與AC所在直線的斜率.
考點:直線的斜率
專題:直線與圓
分析:利用等邊三角形的性質、直線的傾斜角與斜率的關系即可得出.
解答: 解:由圖可知:直線AB,AC的傾斜角分別為150°,30°.
因此斜率分別為tan150°=-
3
3
,tan30°=
3
3

∴邊AB與AC所在直線的斜率分別為-
3
3
,
3
3
點評:本題考查了等邊三角形的性質、直線的傾斜角與斜率的關系,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知直線l1:x+ay+6=0和l2:(a-2)x+3y+2a=0,則l1∥l2的充要條件是( 。
A、a=-1
B、a=3
C、a=-1或a=3
D、a=
1
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,長方體ABCD-A1B1C1D1中,E、F、G分別為AB、C1D1、DC中點,AB=2,AD=
3
,AC1=3
(1)求證:C1E∥平面AFC.
(2)求二面角F-AC-G的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=(
x
a+1
-1)k+(
a
x
-1)k(x>0,a>0,k∈N*),
(1)當k=1時,求函數(shù)的最小值;
(2)當k=2時,記函數(shù)的最小值為g(a),若g(a)≤
2
3
,試確定實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知命題p:函數(shù)y=(a-1)x在R上是減函數(shù),命題q:f(x)=log
1
2
(ax2+ax+1)的定義域為R,求使命題“p或¬q”成立的實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若集合A={-1,3},集合B={x|x2+ax+b=0},且A=B,求實數(shù)a、b.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

解關于x的不等式:loga(x2-4x+3)<loga(-x+1),(a>0,且a≠1).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

過A(-4,0)、B(0,-3)兩點作兩條平行線,求分別滿足下列條件的方程:
(1)兩平行線間距離為4;
(2)這兩條直線各繞A,B旋轉,使它們之間的距離取最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求函數(shù)y=1-cosx的最大值和最小值,并寫出取最值時的x的取值的集合.

查看答案和解析>>

同步練習冊答案