精英家教網 > 高中數學 > 題目詳情

【題目】已知函數
(1)求證:f(x)在(0,+∞)上是單調遞增函數;
(2)若f(x)在 上的值域是 ,求a的值.

【答案】
(1)證明:證明:設x2>x1>0,則x2﹣x1>0,x1x2>0,

= ,

∴f(x2)>f(x1),

∴f(x)在(0,+∞)上是單調遞增的


(2)證明:∵f(x)在(0,+∞)上是單調遞增的,

∴f(x)在 上單調遞增,

,


【解析】(1)利用函數單調性的定義,設x2>x1>0,再將f(x1)﹣f(x2)作差后化積,證明即可;(2)由(1)知f(x)在(0,+∞)上是單調遞增的,從而在[ ,2]上單調遞增,由f(2)=2可求得a的值.
【考點精析】掌握函數單調性的判斷方法和函數單調性的性質是解答本題的根本,需要知道單調性的判定法:①設x1,x2是所研究區(qū)間內任兩個自變量,且x1<x2;②判定f(x1)與f(x2)的大小;③作差比較或作商比較;函數的單調區(qū)間只能是其定義域的子區(qū)間 ,不能把單調性相同的區(qū)間和在一起寫成其并集.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】設函數.

(1)當時,求的單調區(qū)間;

(2)當時, 恒成立,求的取值范圍;

(3)求證:當時, .

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,海中有一小島,周圍3.8海里內有暗礁.一軍艦從A地出發(fā)由西向東航行,望見小島B在北偏東75°,航行8海里到達C處,望見小島B在北偏東60°.若此艦不改變艦行的方向繼續(xù)前進,問此艦有沒有觸礁的危險?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數 . (I)求 的值;
(II)若f(a)>f(﹣a),求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某省2016年高中數學學業(yè)水平測試的原始成績采用百分制,發(fā)布成績使用等級制.各等級劃分標準如下:85分及以上,記為A等;分數在[70,85)內,記為B等;分數在[60,70)內,記為C等;60分以下,記為D等.同時認定A,B,C為合格,D為不合格.已知某學校學生的原始成績均分布在[50,100]內,為了了解該校學生的成績,抽取了50名學生的原始成績作為樣本進行統(tǒng)計,按照[50,60),[60,70),[70,80),[80,90),[90,100]的分組作出樣本頻率分布直方圖如圖所示.

(Ⅰ)求圖中x的值,并根據樣本數據估計該校學生學業(yè)水平測試的合格率;

(Ⅱ)在選取的樣本中,從70分以下的學生中隨機抽取3名學生進行調研,用X表示所抽取的3名學生中成績?yōu)镈等級的人數,求隨機變量X的分布列和數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某校計劃面向高一年級名學生開設校本選修課程,為確保工作的順利實施,先按性別進行分層抽樣,抽取了名學生對社會科學類,自然科學類這兩大類校本選修課程進行選課意向調查,其中男生有人.在這名學生中選擇社會科學類的男生、女生均為人.

(Ⅰ)分別計算抽取的樣本中男生及女生選擇社會科學類的頻率,并以統(tǒng)計的頻率作為概率,估計實際選課中選擇社會科學類學生數;

(Ⅱ)根據抽取的名學生的調查結果,完成下列列聯(lián)表.并判斷能否在犯錯誤的概率不超過的前提下認為科類的選擇與性別有關?

選擇自然科學類

選擇社會科學類

合計

男生

女生

合計

附: ,其中.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】面對全球范圍內日益嚴峻的能源形勢與環(huán)保壓力,環(huán)保與低碳成為今后汽車發(fā)展的一大趨勢,越來越多的消費者對新能源汽車表示出更多的關注,某研究機構從汽車市場上隨機抽取N輛純電動汽車調查其續(xù)航里程(單次充電后能行駛的最大里程),被調查汽車的續(xù)航里程全部介于100公里和450公里之間,根據調查數據形成了如圖所示頻率分布表及頻率分布直方圖.

頻率分布表

分組

頻數

頻率

[100,150)

1

0.05

[150,200)

3

0.15

[200,250)

x

0.1

[250,300)

6

0.3

[300,350)

4

0.2

[350,400)

3

y

[400,450]

1

0.05

合計

N

1

(1)試確定頻率分布表中x,y,N的值,并補全頻率分布直方圖;

(2)若從續(xù)航里程在[200,250)及[350,400)的車輛中隨機抽取2輛車,求兩輛車續(xù)航里程都在[350,400)的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的離心率為,且過點.

(Ⅰ)求橢圓的方程;

(Ⅱ)已知橢圓的左焦點為,直線與橢圓交于不同兩點都在軸上方),.

(。┤酎c的橫坐標為1,求的面積;

(ⅱ)直線是否恒過定點?若過定點,求出該定點的坐標;若不過定點,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設f(x)是定義在R上的奇函數,且當x≥0時, ,若存在x∈[t2﹣1,t],使不等式f(2x+t)≥2f(x)成立,則實數t的取值范圍是.

查看答案和解析>>

同步練習冊答案