已知函數(shù)f(x)=-x2+2ax+1-a在x∈[0,1]時有最大值2,求a的值.
a=2,或a=-1.
【解析】
試題分析:解:原函數(shù)的對稱軸為x=a,開口向下,①當(dāng)a<0時,f(x)在[0,1]上單調(diào)遞減,∴f(x)的最大值為f(0)=1-a=2,∴a=-1<0,∴a=-1符合題意,②當(dāng)0≤a≤1時,f(x)的最大值為f(a)=-a2+2a2+1-a=a2-a+1=2,∴a=或a=?[0,1],∴不合題意,無解,③當(dāng)a>1時,f(x)在[0,1]上單調(diào)遞增,∴f(x)的最大值為f(1)=-1+2a+1-a=a=2>1,∴a=2符合題意,綜①②③得a=-1或a=2
考點:二次函數(shù)求最值問題
點評:本題考察二次函數(shù)求最值問題,注意對稱軸與區(qū)間的位置關(guān)系,當(dāng)對稱軸于區(qū)間的位置關(guān)系不確定時,須分類討論,從而得到原函數(shù)的單調(diào)性,進而可以求最值
科目:高中數(shù)學(xué) 來源:2011屆南京市金陵中學(xué)高三第四次模擬考試數(shù)學(xué)試題 題型:解答題
(本小題滿分16分)已知函數(shù)f(x)=ax2-(2a+1)x+2lnx(a為正數(shù)).
(1) 若曲線y=f(x)在x=1和x=3處的切線互相平行,求a的值;
(2) 求f(x)的單調(diào)區(qū)間;
(3) 設(shè)g(x)=x2-2x,若對任意的x1∈(0,2],均存在x2∈(0,2],使得f(x1)<g(x2),求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年浙江省杭州市高三上學(xué)期開學(xué)考試數(shù)學(xué)卷 題型:選擇題
已知函數(shù)f(x)=4x2-mx+5在區(qū)間[-2,+∞)上是增函數(shù),則f(1)的范圍是( )
A.f(1)≥25 B.f(1)=25 C.f(1)≤25 D.f(1)>25
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年湖南省高三第三次月考文科數(shù)學(xué)卷 題型:選擇題
已知函數(shù)f(x)=若f(a)=,則a= ( )
A.-1 B.
C.-1或 D.1或-
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年湖北省天門市高三天5月模擬文科數(shù)學(xué)試題 題型:填空題
已知函數(shù)f(x)=ax2+bx+c(a≠0),且f(x)=x無實根,下列命題中:
(1)方程f [f (x)]=x一定無實根;
(2)若a>0,則不等式f [f (x)]>x對一切實數(shù)x都成立;
(3)若a<0,則必存在實數(shù)x0,使f [f (x0)]>x0;
(4)若a+b+c=0,則不等式f [f (x)]<x對一切x都成立;
正確的序號有 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012屆江西省南昌市高三第一次模擬測試卷理科數(shù)學(xué)試卷 題型:選擇題
已知函數(shù)f(x)=|lg(x-1)|-()x有兩個零點x1,x2,則有
A.x1x2<1 B.x1x2<x1+x2
C.x1x2=x1+x2 D.x1x2>x1+x2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com