如圖,在四棱錐P-ABCD中,底面為直角梯形,AD∥BC,∠BAD=90°,PA⊥底面ABCD,且PA=AD=AB=2BC,M、N分別為PC、PB的中點(diǎn).
(Ⅰ)求證:PB⊥DM;
(Ⅱ)求CD與平面ADMN所成的角.
【答案】分析:(I)欲證PB⊥DM,可先證PB⊥平面ADMN,根據(jù)直線與平面垂直的判定定理可知只需證PB與平面ADMN內(nèi)兩相交直線垂直,而AN⊥PB,AD⊥PB,滿足定理?xiàng)l件;
(II)取AD的中點(diǎn)G,連接BG、NG,得到 BG∥CD,從而B(niǎo)G與平面ADMN所成的角和CD與平面ADMN所成的角相等,根據(jù)線面所成角的定義可知∠BGN是BG與平面ADMN所成的角,在Rt△BGN中求出此角的正弦值即可.
解答:解:(I)因?yàn)镹是PB的中點(diǎn),PA=AB,
所以AN⊥PB.
因?yàn)锳D⊥平面PAB,所以AD⊥PB,
從而PB⊥平面ADMN.
因?yàn)镈M?平面ADMN,
所以PB⊥DM.
(II)取AD的中點(diǎn)G,連接BG、NG,
則BG∥CD,
所以BG與平面ADMN所成的角和CD與平面ADMN所成的角相等.
因?yàn)镻B⊥平面ADMN,
所以∠BGN是BG與平面ADMN所成的角.
在Rt△BGN中,
故CD與平面ADMN所成的角是
點(diǎn)評(píng):本題主要考查空間線線、線面關(guān)系、空間向量的概念與運(yùn)算等基礎(chǔ)知識(shí),同時(shí)考查空間想象能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在四棱錐P-ABCD中,底面ABCD是矩形.已知AB=3,AD=2,PA=2,PD=2
2
,∠PAB=60°.
(1)證明AD⊥PB;
(2)求二面角P-BD-A的正切值大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,四邊形ABCD為正方形,AB=4,PA=3,點(diǎn)A在PD上的射影為點(diǎn)G,點(diǎn)E在AB上,平面PEC⊥平面PDC.
(1)求證:AG∥平面PEC;
(2)求AE的長(zhǎng);
(3)求二面角E-PC-A的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在四棱錐P-ABCD中,PA⊥底面ABCD,∠BCD=120°,BC⊥AB,CD⊥AD,BC=CD=PA=a,
(Ⅰ)求證:平面PBD⊥平面PAC.
(Ⅱ)求四棱錐P-ABCD的體積V.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在四棱錐P-ABCD中,底面是邊長(zhǎng)為a的菱形,∠ABC=60°PD⊥面ABCD,PC=a,E為PB中點(diǎn)
(1)求證;平面ACE⊥面ABCD;
(2)求三棱錐P-EDC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2008•武漢模擬)如圖,在四棱錐P-ABCD中,底面ABCD是直角梯形,BC∥AD,且∠BAD=90°,又PA⊥底面ABCD,BC=AB=PA=1,AD=2.
(1)求二面角P-CD-A的平面角正切值,
(2)求A到面PCD的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案