以下四個(gè)命題中,正確的是( 。
A、△ABC為直角三角形的充要條件是
AB
AC
=0
B、若
OP
=
1
2
OA
+
1
3
OB
,則P、A、B三點(diǎn)共線
C、若{
a
,
b
,
c
}
為空間的一個(gè)基底,則{
a
+
b
,
b
+
c
,
c
+
a
}
也構(gòu)成空間的一個(gè)基底
D、|(
a
b
)•
c
|=|
a
|•|
b
|•|
c
|
考點(diǎn):命題的真假判斷與應(yīng)用
專題:平面向量及應(yīng)用,空間向量及應(yīng)用
分析:A.由
AB
AC
=0
,利用數(shù)量積定義可得∠BAC=90°,即△ABC為直角三角形,反之不成立;
B.由
OP
=
1
2
OA
+
1
3
OB
,可知
1
2
+
1
3
≠1
,利用向量共線定理即可判斷出;
C.利用基底的意義即可判斷出;
D.左邊=|
a
| |
b
| |cos<
a
b
>| |
c
|
,右邊=|
a
| |
b
| |
c
|
,即可判斷出.
解答: 解:A.由
AB
AC
=0
|
AB
| |
AC
|cos∠BAC=0
⇒cos∠BAC=0⇒∠BAC=90°,即△ABC為直角三角形.
反之不成立,因此
AB
AC
=0
是△ABC為直角三角形的充分不必要條件,因此不正確;
B.∵
OP
=
1
2
OA
+
1
3
OB
,可知
1
2
+
1
3
≠1
,因此P、A、B三點(diǎn)不共線,因此不正確;
C.假設(shè)存在實(shí)數(shù)滿足
c
+
a
=λ(
a
+
b
)+μ(
b
+
c
)
,化為(λ-1)
a
+(λ+μ)
b
+(μ-1)
c
=
0
,
{
a
b
,
c
}
為空間的一個(gè)基底,∴
λ-1=0
λ+μ=0
μ-1=0
,此方程組無(wú)解,因此假設(shè)不成立.
{
a
+
b
,
b
+
c
c
+
a
}
也構(gòu)成空間的一個(gè)基底,因此正確.
D.左邊=|
a
| |
b
| |cos<
a
,
b
>| |
c
|
,右邊=|
a
| |
b
| |
c
|

因此左邊=右邊不恒成立,故不正確.
綜上可知:只有D正確.
故選:D.
點(diǎn)評(píng):本題綜合考查了數(shù)量積的意義、空間向量的基底、向量共線定理等基礎(chǔ)知識(shí)與基本技能方法,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)公差不為零的等差數(shù)列{an}的各項(xiàng)均為整數(shù),Sn為其前n項(xiàng)和,且滿足
a2a3
a1
=-
5
4
,S7=7

(1)求數(shù)列{an}的通項(xiàng)公式;
(2)試求所有的正整數(shù)m,使得
am+1am+2
am
為數(shù)列{an}中的項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列說(shuō)法:其中正確的個(gè)數(shù)是
 

①命題“?x∈R,2x≤0”的否定是“?x∈R,2x>0”;
②關(guān)于x的不等式a<sin2x+
2
sin2x
恒成立,則a的取值范圍是a<3;
③對(duì)于函數(shù)f(x)=
ax
1+|x|
(a∈R且a≠0)
,則有當(dāng)a=1時(shí),?k∈(1,+∞),使得函數(shù)g(x)=f(x)-kx在R上有三個(gè)零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1的一條漸近線方程為y=
1
2
x,則雙曲線的離心率為(  )
A、
5
2
B、
5
C、
5
4
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)A是半徑為1的圓周上一定點(diǎn),P是圓周上一動(dòng)點(diǎn),則弦PA<1的概率是(  )
A、
1
3
B、
2
3
C、
1
6
D、
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

取一根長(zhǎng)度為4米的繩子,拉直后在任意位置剪斷,那么剪得的兩段都不少于1米的概率是( 。
A、
1
4
B、
1
3
C、
1
2
D、
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知菱形ABCD的邊長(zhǎng)為4,∠ABC=150°,若在菱形內(nèi)任取一點(diǎn),則該點(diǎn)到菱形的四個(gè)頂點(diǎn)的距離大于1的概率(  )
A、
π
4
B、1-
π
4
C、
π
8
D、1-
π
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知A、B是橢圓
x2
4
+
y2
3
=1
的左、右頂點(diǎn),橢圓上異于A、B的兩點(diǎn)C、D和x軸上一點(diǎn)P,滿足
AP
=
1
3
AD
+
2
3
AC

(1)設(shè)△ADP、△ACP、△BCP、△BDP的面積分別為S1、S2、S3、S4,求證:S1S3=S2S4;
(2)設(shè)P點(diǎn)的橫坐標(biāo)為x0,求x0的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線C:y=x2,直線l:x-2y-2=0,點(diǎn)P是直線l上任意一點(diǎn),過(guò)點(diǎn)P作拋物線C的切線PM,PN,切點(diǎn)分別為M,N,直線PM,PN斜率分別為k1,k2,如圖所示.
(1)若P(4,1),求證:k1+k2=16;
(2)當(dāng)P在直線l上運(yùn)動(dòng)時(shí),求證:直線MN過(guò)定點(diǎn),并求出該定點(diǎn)坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案