分析 先利用同角三角函數(shù)基本關(guān)系分別求得sinα和sin(α+β)的值,最后利用兩角和與差的余弦函數(shù)公式求得答案.
解答 解:∵α,β為銳角,
∴sinα=$\sqrt{1-co{s}^{2}α}$=$\frac{3}{5}$,sin(α+β)=$\sqrt{1-co{s}^{2}(α+β)}$=$\frac{4}{5}$,
∴cosβ=cos(α+β-α)=cos(α+β)cosα+sin(α+β)sinα=$\frac{3}{5}×\frac{4}{5}$+$\frac{4}{5}×\frac{3}{5}$=$\frac{24}{25}$.
點(diǎn)評(píng) 本題主要考查了兩角和與差的余弦函數(shù)公式的應(yīng)用.解題中巧妙的運(yùn)用了cosβ=cos(α+β-α),屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | l | B. | $\sqrt{2}$ | C. | 2 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $a>\frac{1}{3}$ | B. | $0<a<\frac{1}{3}$ | C. | $0<a<\frac{1}{3}$或a>1 | D. | $\frac{1}{3}<a<1$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | y=log${\;}_{\frac{1}{2}}$x | B. | y=x-1 | C. | y=($\frac{1}{2}$)x | D. | y=x2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com