“a>1”是“函數(shù)f(x)=ax-2,(a>0且a≠1)在區(qū)間(0,+∞)上存在零點”的( 。
A、充分而不必要條件
B、必要而不充分條件
C、充分必要條件
D、既不充分也不必要條件
考點:必要條件、充分條件與充要條件的判斷
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)指數(shù)函數(shù)的性質(zhì),利用充分條件和必要條件的定義進行判斷即可得到結(jié)論.
解答: 解:當(dāng)a>1時,函數(shù)f(x)=ax-2單調(diào)遞增,且f(0)=1-2=-1<0,此時函數(shù)在區(qū)間(0,+∞)上存在零點,充分性成立,
當(dāng)0<a<1時,函數(shù)f(x)=ax-2單調(diào)遞減,且f(0)=1-2=-1<0,此時函數(shù)在區(qū)間(0,+∞)上不存在零點,
故若函數(shù)f(x)=ax-2,(a>0且a≠1)在區(qū)間(0,+∞)上存在零點,則a>1.
即“a>1”是“函數(shù)f(x)=ax-2,(a>0且a≠1)在區(qū)間(0,+∞)上存在零點”的充分必要條件,
故選:C.
點評:本題主要考查充分條件和必要條件的判斷,利用指數(shù)函數(shù)的單調(diào)性的性質(zhì)是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
2
x-1
的圖象與函數(shù)y=2sinπx(-2≤x≤4)的圖象所有交點的橫坐標(biāo)之和等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=2sin(x+
π
6
)cos(x+
π
6
),g(x)=1-2sin2(x+
π
12
),要得到g(x)的圖象,只需把f(x)的圖象( 。
A、向左平移
π
6
個單位
B、向右平移
π
3
個單位
C、向左平移
π
3
個單位
D、向右平移
π
6
個單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知某幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A、2
2
B、
8
2
3
C、3
2
D、
10
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知實數(shù)x,y滿足
x+y-3≥0
x+2y-5≤0
x≥0
y≥0
,則2x-y的最小值是( 。
A、-3B、0C、6D、10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點P(sin
4
,cos
4
)落在角θ的終邊上,且θ∈[0,2π),則tan(θ+
π
3
)的值為( 。
A、
3
+3
B、
3
-3
C、2+
3
D、2-
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)圖象關(guān)于原點成中心對稱,且當(dāng)x≥0時,f(x)=
1
5x+101
-m,則f(log5
1
2
)=(  )
A、
1
101×102
B、
1
102×103
C、
1
33×102
D、
1
202×203

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知(1-x)7=a0+a1x+a2x2+…a7x7,那么a2+a3+a4+a5+a6+a7=(  )
A、-6B、6C、-12D、12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

復(fù)數(shù)z=
5-3i
1-i
+2i的模為(  )
A、3
B、4
C、5
D、4
2

查看答案和解析>>

同步練習(xí)冊答案