精英家教網 > 高中數學 > 題目詳情

【題目】已知等差數列滿足,,數列的前項和為滿足.

(Ⅰ)求的通項公式;

(Ⅱ)若,恒成立,求實數的取值范圍.

【答案】(Ⅰ),;(Ⅱ).

【解析】

(Ⅰ)根據題設條件,列出方程組求得的值,即可得到得出數列的通項公式,再利用數列的遞推關系,得到數列是首項為1,公比為2的等比數列,即可求出數列的通項公式;

(Ⅱ)由(Ⅰ)可得,利用乘公比錯位相減法,即可求解.

(Ⅰ)設等差數列的公差為,

因為,,可得,解得,

所以,

對于數列,當時,,解得.

時,,,

兩式相減,得,即,

所以是以1為首項,2為公比的等比數列,所以.

(Ⅱ)由(Ⅰ)可得.

時,.

時,

.

兩式相減,得

,

,而時也符合該式,所以

故題中不等式可化為.*),

時,不等式(*)可化為,解得;

時,不等式(*)可化為,此時

時,不等式(*)可化為,因為數列是遞增數列,所以,

綜上,實數的取值范圍是.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】程大位是明代著名數學家,他的《新編直指算法統(tǒng)宗》是中國歷史上一部影響巨大的著作.它問世后不久便風行宇內,成為明清之際研習數學者必讀的教材,而且傳到朝鮮、日本及東南亞地區(qū),對推動漢字文化圈的數學發(fā)展起了重要的作用.卷八中第33問是:“今有三角果一垛,底闊每面七個,問該若干?”如圖是解決該問題的程序框圖.執(zhí)行該程序框圖,求得該垛果子的總數為( )

A.84B.56C.35D.28

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐中,等邊三角形所在的平面垂直于底面, ,是棱的中點.

(Ⅰ)求證:平面;

(Ⅱ)求二面角的余弦值;

(Ⅲ)判斷直線與平面的是否平行,并說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在以ABCDEF為頂點的五面體中,底面ABCD為菱形,∠ABC120°ABAEED2EF,EFAB,點GCD中點,平面EAD⊥平面ABCD.

1)證明:BDEG;

2)若三棱錐,求菱形ABCD的邊長.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知直線的參數方程為為參數),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.

(1)求直線的普通方程和曲線的直角坐標方程;

(2)設點,直線與曲線交于兩點,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的左、右焦點分別為,上頂點為,的面積為1,且橢圓的離心率為.

1)求橢圓的標準方程;

2)點在橢圓上且位于第二象限,過點作直線,過點作直線,若直線的交點恰好也在橢圓上,求點的坐標.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某校為了解家長對學校食堂的滿意情況,分別從高一、高二年級隨機抽取了20位家長的滿意度評分,其頻數分布表如下:

滿意度評分分組

合計

高一

1

3

6

6

4

20

高二

2

6

5

5

2

20

根據評分,將家長的滿意度從低到高分為三個等級:

滿意度評分

評分70

70評分90

評分90

滿意度等級

不滿意

滿意

非常滿意

假設兩個年級家長的評價結果相互獨立,根據所給數據,以事件發(fā)生的頻率作為相應事件發(fā)生的概率.現(xiàn)從高一、高二年級各隨機抽取1名家長,記事件:“高一家長的滿意度等級高于高二家長的滿意度等級”,則事件發(fā)生的概率為__________.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】(本題滿分13分)

某食品廠進行蘑菇的深加工,每公斤蘑菇的成本20元,并且每公斤蘑菇的加工費為元(為常數,且,設該食品廠每公斤蘑菇的出廠價為元(),根據市場調查,銷售量成反比,當每公斤蘑菇的出廠價為30元時,日銷售量為100公斤.

)求該工廠的每日利潤元與每公斤蘑菇的出廠價元的函數關系式;

)若,當每公斤蘑菇的出廠價為多少元時,該工廠的利潤最大,并求最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數

1)若函數上遞增,在上遞減,求實數的值.

2))討論上的單調性;

3)若方程有兩個不等實數根,求實數的取值范圍,并證明.

查看答案和解析>>

同步練習冊答案