【題目】如圖,C是以AB為直徑的圓O上異于A,B的點,平面PAC⊥平面ABC,PA=PC=AC=2,BC=4,E,F(xiàn) 分別是PC,PB的中點,記平面AEF與平面ABC的交線為直線l.
(Ⅰ)求證:直線l⊥平面PAC;
(Ⅱ)直線l上是否存在點Q,使直線PQ分別與平面AEF、直線EF所成的角互余?若存在,求出|AQ|的值;若不存在,請說明理由.

【答案】(Ⅰ)證明:∵E,F(xiàn)分別是PB,PC的中點,∴BC∥EF, 又EF平面EFA,BC不包含于平面EFA,
∴BC∥面EFA,
又BC面ABC,面EFA∩面ABC=l,
∴BC∥l,
又BC⊥AC,面PAC∩面ABC=AC,
面PAC⊥面ABC,∴BC⊥面PAC,
∴l(xiāng)⊥面PAC.
(Ⅱ)解:以C為坐標原點,CA為x軸,CB為y軸,
過C垂直于面ABC的直線為z軸,建立空間直角坐標系,

A(2,0,0),B(0,4,0),P(1,0, ),
E( ),F(xiàn)( ),
, ,
設Q(2,y,0),面AEF的法向量為

取z= ,得 ,
|cos< >|= = ,
|cos< >|= = ,
依題意,得|cos< >|=|cos< >|,
∴y=±1.
∴直線l上存在點Q,使直線PQ分別與平面AEF、直線EF所成的角互余,|AQ|=1.
【解析】(Ⅰ)利用三角形中位線定理推導出BC∥面EFA,從而得到BC∥l,再由已知條件推導出BC⊥面PAC,由此證明l⊥面PAC.(2)以C為坐標原點,CA為x軸,CB為y軸,過C垂直于面ABC的直線為z軸,建立空間直角坐標系,利用向量法求出直線l上存在點Q,使直線PQ分別與平面AEF、直線EF所成的角互余,|AQ|=1.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知fx)是定義在R的奇函數(shù),且當x<0時,fx)=1+3x

(1)求fx)的解析式并畫出其圖形;

(2)求函數(shù)fx)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義在R上的奇函數(shù)fx),當x≥0時,fx)=,則關于x的函數(shù)Fx)=fx)-的所有零點之和為______

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直三棱柱中, , , 的中點.

(1)求證: 平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),命題,;命題.

(1)為真命題,求的取值范圍;

(2)為真命題,求的取值范圍;

(3)為假命題,為假命題,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知點和直線,設圓的半徑為1,圓心在直線上.

(Ⅰ)若圓心也在直線上,過點作圓的切線.

(1)求圓的方程;(2)求切線的方程;

(Ⅱ)若圓上存在點,使,求圓心的橫坐標的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】日前,揚州下達了2018年城市建設和環(huán)境提升重點工程項目計劃,其中將對一塊以O為圓心,R(R為常數(shù),單位:米)為半徑的半圓形荒地進行治理改造,如圖所示,△OBD區(qū)域用于兒童樂園出租,弓形BCD區(qū)域(陰影部分)種植草坪,其余區(qū)域用于種植觀賞植物.已知種植草坪和觀賞植物的成本分別是每平方米5元和55元,兒童樂園出租的利潤是每平方米95元.

(1)設∠BOD=θ(單位:弧度),用θ表示弓形BCD的面積S=f(θ);

(2)如果市規(guī)劃局邀請你規(guī)劃這塊土地,如何設計∠BOD的大小才能使總利潤最大?并求出該最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于定義在上的函數(shù),有下列四個命題:

①若是奇函數(shù),則的圖象關于點對稱;

②若對,有,則的圖象關于直線對稱;

③若對,有,則的圖象關于點對稱;

④函數(shù)與函數(shù)的圖像關于直線對稱.

其中正確命題的序號為__________.(把你認為正確命題的序號都填上)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某市對高二學生的期末理科數(shù)學測試的數(shù)據統(tǒng)計顯示,全市10000名學生的成績服從正態(tài)分布,現(xiàn)從甲校100分以上(100)200份試卷中用系統(tǒng)抽樣中等距抽樣的方法抽取了20份試卷來分析(試卷編號為001,002,…,200),統(tǒng)計如下:

注:表中試卷編號

(1)寫出表中試卷得分為144分的試卷編號(寫出具體數(shù)據即可);

(2)該市又從乙校中也用與甲校同樣的抽樣方法抽取了20份試卷,將甲乙兩校這40份試卷的得分制作了莖葉圖(如圖)在甲、乙兩校這40份學生的試卷中,從成績在140分以上(140)的學生中任意抽取3人,該3人在全市排名前15名的人數(shù)記為,求隨機變量的分布列和期望.

:若隨機變量X服從正態(tài)分布

查看答案和解析>>

同步練習冊答案