已知函數(shù)f(x)的定義域?yàn)镽,則下列命題中:
①y=f(x)為偶函數(shù),則y=f(x+2)的圖象關(guān)于y軸對(duì)稱;
②y=f(x+2)為偶函數(shù),則y=f(x)關(guān)于直線x=2對(duì)稱;
③若f(x-2)=f(2-x),則y=f(x)關(guān)于直線x=2對(duì)稱;
④y=f(x-2)和y=f(2-x)的圖象關(guān)于直線x=2對(duì)稱.
其中正確命題序號(hào)有    .(填上所有正確命題序號(hào))
【答案】分析:根據(jù)偶函數(shù)的圖象關(guān)于y軸(x=0)對(duì)稱,將函數(shù)f(x)的圖象向左平移兩個(gè)單位后得到f(x+2)的圖象(將函數(shù)f(x+2)的圖象向右平移兩個(gè)單位后得到f(x)的圖象),根據(jù)函數(shù)圖象的平移,對(duì)稱軸也跟著平移的原則,可對(duì)①②進(jìn)行判斷.對(duì)于③,將x-2看成整體,可得f(x)是偶函數(shù),從而其圖象關(guān)于y軸對(duì)稱;對(duì)于④從兩個(gè)函數(shù)的形式上可以看出,此兩函數(shù)都是抽象函數(shù),可以分別看作函數(shù)y=f(x)與y=f(-x)的圖象向右移了兩個(gè)單位而得到,由此問(wèn)題變化為研究f(x)與y=f(-x)的圖象的對(duì)稱性,再由平移規(guī)律得出函數(shù)y=f(x-2)與y=f(2-x)的圖象的對(duì)稱軸即可.
解答:解:∵f(x)是偶函數(shù),
∴函數(shù)f(x)的圖象關(guān)于y軸(x=0)對(duì)稱
將函數(shù)f(x)的圖象向左平移兩個(gè)單位后得到f(x+2)的圖象
故f(x+2)的圖象關(guān)于x=-2對(duì)稱,①不正確;
反之當(dāng)f(x+2)是偶函數(shù)時(shí),函數(shù)f(x+2)的圖象關(guān)于y軸(x=0)對(duì)稱
將函數(shù)f(x+2)的圖象向右平移兩個(gè)單位后得到f(x)的圖象
函數(shù)f(x)的圖象關(guān)于x=2對(duì)稱,②正確;
對(duì)于③,將x-2看成整體,可得f(t)=f(-t),從而f(x)是偶函數(shù),從而其圖象關(guān)于y軸對(duì)稱;故③錯(cuò);
④:∵f(x)與y=f(-x)的圖象關(guān)于直線x=0對(duì)稱
又函數(shù)y=f(x-2)與y=f(2-x)的圖象可以由f(x)與y=f(-x)的圖象向右移了個(gè)單位而得到,
∴函數(shù)y=f(x-2)與y=f(2-x)的圖象關(guān)于直線x=2對(duì)稱,正確.
故答案為:②④.
點(diǎn)評(píng):本題考點(diǎn)是兩個(gè)函數(shù)圖象的對(duì)稱性、奇偶函數(shù)圖象的對(duì)稱性質(zhì),函數(shù)圖象的平移變換,考查根據(jù)已知函數(shù)圖象的性質(zhì)來(lái)判斷與之相關(guān)函數(shù)性質(zhì)的能力,即圖象變換的能力,其中正確理解函數(shù)圖象的平移,對(duì)稱軸也跟著平移的原則,是解答本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=log3
3
x
1-x
,M(x1,y1),N(x2,y2)
是f(x)圖象上的兩點(diǎn),橫坐標(biāo)為
1
2
的點(diǎn)P滿足2
OP
=
OM
+
ON
(O為坐標(biāo)原點(diǎn)).
(Ⅰ)求證:y1+y2為定值;
(Ⅱ)若Sn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)
,其中n∈N*,且n≥2,求Sn;
(Ⅲ)已知an=
1
6
,                          n=1
1
4(Sn+1)(Sn+1+1)
,n≥2
,其中n∈N*,Tn為數(shù)列{an}的前n項(xiàng)和,若Tn<m(Sn+1+1)對(duì)一切n∈N*都成立,試求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列說(shuō)法正確的有( 。﹤(gè).
①已知函數(shù)f(x)在(a,b)內(nèi)可導(dǎo),若f(x)在(a,b)內(nèi)單調(diào)遞增,則對(duì)任意的?x∈(a,b),有f′(x)>0.
②函數(shù)f(x)圖象在點(diǎn)P處的切線存在,則函數(shù)f(x)在點(diǎn)P處的導(dǎo)數(shù)存在;反之若函數(shù)f(x)在點(diǎn)P處的導(dǎo)數(shù)存在,則函數(shù)f(x)圖象在點(diǎn)P處的切線存在.
③因?yàn)?>2,所以3+i>2+i,其中i為虛數(shù)單位.
④定積分定義可以分為:分割、近似代替、求和、取極限四步,對(duì)求和In=
n
i=1
f(ξi)△x
中ξi的選取是任意的,且In僅于n有關(guān).
⑤已知2i-3是方程2x2+px+q=0的一個(gè)根,則實(shí)數(shù)p,q的值分別是12,26.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=sin(2x-
π
6
),g(x)=sin(2x+
π
3
),直線y=m與兩個(gè)相鄰函數(shù)的交點(diǎn)為A,B,若m變化時(shí),AB的長(zhǎng)度是一個(gè)定值,則AB的值是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(Ⅰ)已知函數(shù)f(x)=x3-x,其圖象記為曲線C.
(i)求函數(shù)f(x)的單調(diào)區(qū)間;
(ii)證明:若對(duì)于任意非零實(shí)數(shù)x1,曲線C與其在點(diǎn)P1(x1,f(x1))處的切線交于另一點(diǎn)P2(x2,f(x2)),曲線C與其在點(diǎn)P2(x2,f(x2))處的切線交于另一點(diǎn)P3(x3,f(x3)),線段P1P2,P2P3與曲線C所圍成封閉圖形的面積記為S1,S2.則
S1S2
為定值;
(Ⅱ)對(duì)于一般的三次函數(shù)g(x)=ax3+bx2+cx+d(a≠0),請(qǐng)給出類似于(Ⅰ)(ii)的正確命題,并予以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x3-ax+b存在極值點(diǎn).
(1)求a的取值范圍;
(2)過(guò)曲線y=f(x)外的點(diǎn)P(1,0)作曲線y=f(x)的切線,所作切線恰有兩條,切點(diǎn)分別為A、B.
(ⅰ)證明:a=b;
(ⅱ)請(qǐng)問(wèn)△PAB的面積是否為定值?若是,求此定值;若不是求出面積的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案