【題目】如圖,在四棱錐中,已知底面,,,,異面直線所成角等于.

(1)求直線和平面所成角的正弦值;

(2)在棱上是否存在一點,使得平面與平面所成銳二面角的正切值為?若存在,指出點在棱上的位置;若不存在,說明理由.

【答案】(1);(2)存在這樣的點,為棱上靠近的三等分點.

【解析】分析:(1)為原點,,,所在直線分別為,軸,建立空間直角坐標(biāo)系.利用空間向量法能求出直線和平面所成角的正弦值.

(2)先假設(shè)棱上存在一點,求出平面與平面的法向量,進而求得二面角的余弦值,結(jié)合其正切值為,求出E點的位置.

詳解:解:(1)如圖,以為原點,,,所在直線分別為,軸,建立空間直角坐標(biāo)系.

易知是等腰直角三角形,∴.

設(shè),則,,,.

,

∵異面直線所成角等于,

,即,解得,

.

設(shè)平面的一個法向量為,

則由,得,所以可取,

.

∴直線和平面所成角的正弦值為.

(2)假設(shè)存在,設(shè),且,則,

,設(shè)平面的一個法向量為

則由,得,

,又有平面的法向量,

由平面與平面所成銳二面角的正切值為,可知余弦值為,

,得

解得(不合題意).

∴存在這樣的點,為棱上靠近的三等分點.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義:如果函數(shù)f(x)在[a,b]上存在x1 , x2(a<x1<x2<b)滿足 則稱函數(shù)f(x)是[a,b]上的“中值函數(shù)”.已知函數(shù) 是[0,m]上的“中值函數(shù)”,則實數(shù)m的取值范圍是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線 : 過點的直線交拋物線兩點,設(shè)

(1)若點 關(guān)于軸的對稱點為,求證:直線經(jīng)過拋物線 的焦點;

(2)若求當(dāng)最大時,直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點P在圓柱OO1的底面⊙O上,分別為⊙O、⊙O1的直徑,且平面

(1)求證:

(2)若圓柱的體積,

①求三棱錐A1﹣APB的體積.

②在線段AP上是否存在一點M,使異面直線OM與所成角的余弦值為?若存在,請指出M的位置,并證明;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)為了解下屬某部門對本企業(yè)職工的服務(wù)情況,隨機訪問50名職工,根據(jù)這50名職工對該部門的評分,繪制頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間為

1)求頻率分布直方圖中的值;

2)估計該企業(yè)的職工對該部門評分不低于80的概率;

3)從評分在的受訪職工中,隨機抽取2人,求此2人評分都在的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C1 (a>b>0)的離心率為 ,P(﹣2,1)是C1上一點.
(1)求橢圓C1的方程;
(2)設(shè)A,B,Q是P分別關(guān)于兩坐標(biāo)軸及坐標(biāo)原點的對稱點,平行于AB的直線l交C1于異于P、Q的兩點C,D,點C關(guān)于原點的對稱點為E.證明:直線PD、PE與y軸圍成的三角形是等腰三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知過原點O的直線與函數(shù)的圖象交于A,B兩點,分別過A,By軸的平行線與函數(shù)圖象交于CD兩點,若軸,則四邊形ABCD的面積為_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在四棱臺ABCD﹣A1B1C1D1中,AA1⊥底面ABCD,四邊形ABCD為菱形,∠BAD=120°,AB=AA1=2A1B1=2. (Ⅰ)若M為CD中點,求證:AM⊥平面AA1B1B;
(Ⅱ)求直線DD1與平面A1BD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知圓軸的左右交點分別為,與軸正半軸的交點為.

(1)若直線過點并且與圓相切,求直線的方程;

(2)若點是圓上第一象限內(nèi)的點,直線分別與軸交于點,點是線段的中點,直線,求直線的斜率.

查看答案和解析>>

同步練習(xí)冊答案
闂備胶枪妤犲繘骞忛敓锟� 闂傚倸鍊搁崑濠囧箯閿燂拷