【題目】某超市從2014年甲、乙兩種酸奶的日銷售量(單位:箱)的數(shù)據(jù)中分別隨機(jī)抽取100個(gè),并按[ 0,10],(10,20],(20,30],(30,40],(40,50]分組,得到頻率分布直方圖如下:
假設(shè)甲、乙兩種酸奶獨(dú)立銷售且日銷售量相互獨(dú)立.
(1)寫出頻率分布直方圖(甲)中的的值;記甲種酸奶與乙種酸奶日銷售量(單位:箱)的方差分別為,,試比較與的大小;(只需寫出結(jié)論)
(2)估計(jì)在未來的某一天里,甲、乙兩種酸奶的銷售量恰有一個(gè)高于20箱且另一個(gè)不高于20箱的概率;
(3)設(shè)表示在未來3天內(nèi)甲種酸奶的日銷售量不高于20箱的天數(shù),以日銷售量落入各組的頻率作為概率,求的數(shù)學(xué)期望.
【答案】(1),;(2)0.42;(3)0.9.
【解析】
試題(Ⅰ)由各個(gè)小矩形的面積和為1,先求出,由頻率分布直方圖可看出,甲的銷售量比較分散,而乙較為集中,由此可得出與的大小關(guān)系;(Ⅱ)首先設(shè)事件:在未來的某一天里,甲種酸奶的銷售量不高于20箱;事件:在未來的某一天里,乙種酸奶的銷售量不高于20箱;事件:在未來的某一天里,甲、乙兩種酸奶的銷售量恰好一個(gè)高于20箱且另一個(gè)不高于20箱;然后分別求出事件和事件的概率,最后由相互獨(dú)立事件的概率乘法計(jì)算公式即可得出所求的結(jié)果;(Ⅲ)首先由題意可知的可能取值為0,1,2,3,然后運(yùn)用相互獨(dú)立重復(fù)試驗(yàn)的概率計(jì)算公式分別計(jì)算相應(yīng)的概率,最后得出其分布列即可.
試題解析:(Ⅰ)由各小矩形的面積和為1可得:,解之的
;由頻率分布直方圖可看出,甲的銷售量比較分散,而乙較為集中,主要集中在箱,故
.
(Ⅱ)設(shè)事件:在未來的某一天里,甲種酸奶的銷售量不高于20箱;事件:在未來的某一天里,乙種酸奶的銷售量不高于20箱;事件:在未來的某一天里,甲、乙兩種酸奶的銷售量恰好一個(gè)高于20箱且另一個(gè)不高于20箱.則,.所以.
(Ⅲ)由題意可知,的可能取值為0,1,2,3.
,,
,.
所以的分布列為
0 | 1 | 2 | 3 | |
0.343 | 0.441 | 0.189 | 0.027 |
所以的數(shù)學(xué)期望.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(Ⅰ)求函數(shù)在點(diǎn)點(diǎn)處的切線方程;
(Ⅱ)當(dāng)時(shí),恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線的方程為,集合,若對于任意的,都存在,使得成立,則稱曲線為曲線,下列方程所表示的曲線中,是曲線的有______(寫出所有曲線的序號)
①;②;③;④;⑤.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某小學(xué)舉辦“父母養(yǎng)育我,我報(bào)父母恩”的活動(dòng),對六個(gè)年級(一年級到六年級的年級代碼分別為1,2…,6)的學(xué)生給父母洗腳的百分比y%進(jìn)行了調(diào)查統(tǒng)計(jì),繪制得到下面的散點(diǎn)圖.
(1)由散點(diǎn)圖看出,可用線性回歸模型擬合y與x的關(guān)系,請用相關(guān)系數(shù)加以說明;
(2)建立y關(guān)于x的回歸方程,并據(jù)此預(yù)計(jì)該校學(xué)生升入中學(xué)的第一年(年級代碼為7)給父母洗腳的百分比.
附注:參考數(shù)據(jù):
參考公式:相關(guān)系數(shù),若r>0.95,則y與x的線性相關(guān)程度相當(dāng)高,可用線性回歸模型擬合y與x的關(guān)系.回歸方程中斜率與截距的最小二乘估計(jì)公式分別為= ,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,函數(shù)在第一象限內(nèi)的圖像如圖所示,試做如下操作:把x軸上的區(qū)間等分成n個(gè)小區(qū)間,在每一個(gè)小區(qū)間上作一個(gè)小矩形,使矩形的右端點(diǎn)落在函數(shù)的圖像上.若用表示第k個(gè)矩形的面積,表示這n個(gè)叫矩形的面積總和.
(1)求的表達(dá)式;
(2)利用數(shù)學(xué)歸納法證明,并求出的表達(dá)式
(3)求的值,并說明的幾何意義.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系.已知曲線的極坐標(biāo)方程為,為曲線上的動(dòng)點(diǎn),與軸、軸的正半軸分別交于,兩點(diǎn).
(1)求線段中點(diǎn)的軌跡的參數(shù)方程;
(2)若是(1)中點(diǎn)的軌跡上的動(dòng)點(diǎn),求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:,其中,點(diǎn)是橢圓的右頂點(diǎn),射線:與橢圓的交點(diǎn)為.
(1)求點(diǎn)的坐標(biāo);
(2)設(shè)橢圓的長半軸、短半軸的長分別為、,當(dāng)的值在區(qū)間中變化時(shí),求的取值范圍;
(3)在(2)的條件下,以為焦點(diǎn),為頂點(diǎn)且開口方向向左的拋物線過點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司航拍宣傳畫報(bào),為了凸顯公司文化,選擇如圖所示的邊長為2百米的正三角形空地進(jìn)行布置拍攝場景,在的中點(diǎn)處安裝中央聚光燈,為邊上得可以自由滑動(dòng)的動(dòng)點(diǎn),其中設(shè)置為普通色彩燈帶(燈帶長度可以自由伸縮),線段部分需要材料 (單位:百米)裝飾用以增加拍攝效果因材料價(jià)格昂貴,所以公司要求采購材料使用不造成浪費(fèi).
(1)當(dāng),與垂直時(shí),采購部需要采購多少百米材料?
(2)為了增加拍攝動(dòng)態(tài)效果需要,現(xiàn)要求點(diǎn)在邊上滑動(dòng),且,則購買材料的范圍是多少才能滿足動(dòng)態(tài)效果需要又不會(huì)造成浪費(fèi).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商場營銷人員進(jìn)行某商品的市場營銷調(diào)查時(shí)發(fā)現(xiàn),每回饋消費(fèi)者一定的點(diǎn)數(shù),該商品每天的銷量就會(huì)發(fā)生一定的變化,經(jīng)過試點(diǎn)統(tǒng)計(jì)得到以下表:
反饋點(diǎn)數(shù)t | 1 | 2 | 3 | 4 | 5 |
銷量(百件)/天 | 0.5 | 0.6 | 1 | 1.4 | 1.7 |
(Ⅰ)經(jīng)分析發(fā)現(xiàn),可用線性回歸模型擬合當(dāng)?shù)卦撋唐蜂N量(千件)與返還點(diǎn)數(shù)之間的相關(guān)關(guān)系.試預(yù)測若返回6個(gè)點(diǎn)時(shí)該商品每天的銷量;
(Ⅱ)若節(jié)日期間營銷部對商品進(jìn)行新一輪調(diào)整.已知某地?cái)M購買該商品的消費(fèi)群體十分龐大,經(jīng)營銷調(diào)研機(jī)構(gòu)對其中的200名消費(fèi)者的返點(diǎn)數(shù)額的心理預(yù)期值進(jìn)行了一個(gè)抽樣調(diào)查,得到如下一份頻數(shù)表:
返還點(diǎn)數(shù)預(yù)期值區(qū)間 (百分比) | [1,3) | [3,5) | [5,7) | [7,9) | [9,11) | [11,13) |
頻數(shù) | 20 | 60 | 60 | 30 | 20 | 10 |
將對返點(diǎn)點(diǎn)數(shù)的心理預(yù)期值在和的消費(fèi)者分別定義為“欲望緊縮型”消費(fèi)者和“欲望膨脹型”消費(fèi)者,現(xiàn)采用分層抽樣的方法從位于這兩個(gè)區(qū)間的30名消費(fèi)者中隨機(jī)抽取6名,再從這6人中隨機(jī)抽取3名進(jìn)行跟蹤調(diào)查,求抽出的3人中至少有1名“欲望膨脹型”消費(fèi)者的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com