【題目】如圖,三棱柱ABC﹣DEF中,側(cè)面ABED是邊長(zhǎng)為2的菱形,且∠ABE= ,BC= ,四棱錐F﹣ABED的體積為2,點(diǎn)F在平面ABED內(nèi)的正投影為G,且G在AE上,點(diǎn)M是在線段CF上,且CM= CF.
(Ⅰ)證明:直線GM∥平面DEF;
(Ⅱ)求二面角M﹣AB﹣F的余弦值.
【答案】(Ⅰ)證明:∵四棱錐錐F﹣ABED的體積為2, 即VF﹣ABCD= ,∴FG= .
又BC=EF= ,∴EG= ,即點(diǎn)G是靠近點(diǎn)A的四等分點(diǎn).
過(guò)點(diǎn)G作GK∥AD交DE于點(diǎn)K,∴GK= .
又MF= ,∴MF=GK且MF∥GK.
四邊形MFKG為平行四邊形,
∴GM∥FK,
∴直線GM∥平面DEF;
(Ⅱ)設(shè)AE、BD的交點(diǎn)為O,OB所在直線為x軸,OE所在直線為y軸,
過(guò)點(diǎn)O作平面ABED的垂線為z軸,建立空間直角坐標(biāo)系,如圖所示:
A(0,﹣1,0),B( ,0,0),F(xiàn)(0,﹣ , ),M( ).
, , .
設(shè)平面ABM,ABF的法向量分別為 , .
由 ,則 ,取y=﹣ ,得 ,
同理求得 .
∴cos< >= ,
∴二面角M﹣AB﹣F的余弦值為 .
【解析】(Ⅰ)由四棱錐錐F﹣ABED的體積為2求出FG,進(jìn)一步求得EG,可得點(diǎn)G是靠近點(diǎn)A的四等分點(diǎn).過(guò)點(diǎn)G作GK∥AD交DE于點(diǎn)K,可得GK= .又MF= ,得到MF=GK且MF∥GK.則四邊形MFKG為平行四邊形,從而得到GM∥FK,進(jìn)一步得到直線GM∥平面DEF;(Ⅱ)設(shè)AE、BD的交點(diǎn)為O,OB所在直線為x軸,OE所在直線為y軸,點(diǎn)O作平面ABED的垂線為z軸,建立空間直角坐標(biāo)系,求出平面ABM,ABF的法向量,由兩法向量所成角的余弦值得二面角M﹣AB﹣F的余弦值.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用直線與平面平行的判定的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行;簡(jiǎn)記為:線線平行,則線面平行.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知隨機(jī)變量X﹣N(1,1),其正態(tài)分布密度曲線如圖所示,若向正方形OABC中隨機(jī)投擲10000個(gè)點(diǎn),則落入陰影部分的點(diǎn)個(gè)數(shù)的估計(jì)值為( ) 附:若隨機(jī)變量ξ﹣N(μ,σ2),則P(μ﹣σ<ξ≤μ+σ)=0.6826,P(μ﹣2σ<ξ≤μ+2σ)=0.9544.
A.6038
B.6587
C.7028
D.7539
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)的定義域?yàn)镈,若對(duì)于a,b,c∈D,f(a),f(b),f(c)分別為某個(gè)三角形的邊長(zhǎng),則稱(chēng)f(x)為“三角形函數(shù)”.給出下列四個(gè)函數(shù): ①f(x)=lnx(e2≤x≤e3);②f(x)=4﹣cosx;③ ;④ .
其中為“三角形函數(shù)”的個(gè)數(shù)是( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=lnx﹣ax+ ,且f(x)+f( )=0,其中a,b為常數(shù).
(1)若函數(shù)f(x)的圖象在x=1的切線經(jīng)過(guò)點(diǎn)(2,5),求函數(shù)的解析式;
(2)已知0<a<1,求證:f( )>0;
(3)當(dāng)f(x)存在三個(gè)不同的零點(diǎn)時(shí),求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=e2x﹣ax2+bx﹣1,其中a,b∈R,e為自然對(duì)數(shù)的底數(shù),若f(1)=0,f′(x)是f(x)的導(dǎo)函數(shù),函數(shù)f′(x)在區(qū)間(0,1)內(nèi)有兩個(gè)零點(diǎn),則a的取值范圍是( )
A.(e2﹣3,e2+1)
B.(e2﹣3,+∞)
C.(﹣∞,2e2+2)
D.(2e2﹣6,2e2+2)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)=|x﹣1|﹣|2x+1|的最大值為m.
(Ⅰ)作出函數(shù)f(x)的圖象;
(Ⅱ)若a2+2c2+3b2=m,求ab+2bc的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x2﹣alnx(a>0)的最小值是1.
(Ⅰ)求a;
(Ⅱ)若關(guān)于x的方程f2(x)ex﹣6mf(x)+9me﹣x=0在區(qū)間[1,+∞)有唯一的實(shí)根,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,a,b,c分別是角A,B,C的對(duì)邊,且b,c是關(guān)于x的一元二次方程x2+mx﹣a2+b2+c2=0的兩根.
(1)求角A的大小;
(2)已知a= ,設(shè)B=θ,△ABC的面積為y,求y=f(θ)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,若 = ,則這個(gè)三角形必含有( )
A.90°的內(nèi)角
B.60°的內(nèi)角
C.45°的內(nèi)角
D.30°的內(nèi)角
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com