【題目】在△ABC中,角A、B、C所對的邊分別是a、b、c,且滿足csinA﹣ acosC=0.
(1)求角C的大;
(2)若c=2,求△ABC的面積S的最大值.

【答案】
(1)解:∵ ,

∴由正弦定理得 ,

∵0<A<π,

∴sinA≠0,

,

∵0<C<π,


(2)解:由余弦定理得c2=a2+b2﹣2abcosC,又c=2, ,

∴4=a2+b2﹣ab,

∵a>0,b>0,

∴ab+4=a2+b2≥2ab,

∴ab≤4,當且僅當a=b=2時等號成立,

,當且僅當a=b=2時等號成立,

∴△ABC的面積S的最大值為


【解析】(1)由正弦定理化簡已知等式可得 ,結合sinA≠0,可求 ,結合范圍0<C<π,即可求得C的值.(2)由已知及余弦定理得4=a2+b2﹣ab,結合基本不等式可求ab≤4,根據(jù)三角形的面積公式即可得解.
【考點精析】關于本題考查的正弦定理的定義,需要了解正弦定理:才能得出正確答案.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知α是第三象限角,且sinα=﹣
(1)求tanα與tan(α﹣ )的值;
(2)求cos2α的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】【2017鎮(zhèn)江一模】如圖,某公園有三條觀光大道圍成直角三角形,其中直角邊,

斜邊現(xiàn)有甲、乙、丙三位小朋友分別在大道上嬉戲,所在位

置分別記為點

(1)若甲乙都以每分鐘的速度從點出發(fā)在各自的大道上奔走,到大道的另一端

時即停,乙比甲遲分鐘出發(fā),當乙出發(fā)分鐘后,求此時甲乙兩人之間的距離;

(2)設,乙丙之間的距離是甲乙之間距離的倍,且,請將甲

乙之間的距離表示為的函數(shù),并求甲乙之間的最小距離

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】100輛汽車通過某一段公路時,時速的頻率分布直方圖如圖所示,則時速在[50,70)的汽車大約有( 。

A.60輛
B.80輛
C.70輛
D.140輛

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義一種運算ab= ,令f(x)=(3x2+6x)(2x+3﹣x2),則函數(shù)f(x)的最大值是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】【2017福建三明5月質檢】如圖,在四棱錐中,側面底面,底面是平行四邊形, , , 的中點,點在線段上.

(Ⅰ)求證: ;

(Ⅱ)試確定點的位置,使得直線與平面所成的角和直線與平面所成的角相等.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知在平面坐標系內,O為坐標原點,向量 =(1,7), =(5,1), =(2,1),點M為直線OP上的一個動點.
(1)當 取最小值時,求向量 的坐標;
(2)在點M滿足(I)的條件下,求∠AMB的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】平面直角坐標系xOy中,過橢圓M: (a>b>0)右焦點的直線x+y﹣ =0交M于A,B兩點,P為AB的中點,且OP的斜率為
(Ⅰ)求M的方程
(Ⅱ)C,D為M上的兩點,若四邊形ACBD的對角線CD⊥AB,求四邊形ACBD面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知曲線C1y=cos x,C2y=sin (2x+),則下面結論正確的是

A. C1上各點的橫坐標伸長到原來的2倍,縱坐標不變,再把得到的曲線向右平移個單位長度,得到曲線C2

B. C1上各點的橫坐標伸長到原來的2倍,縱坐標不變,再把得到的曲線向左平移個單位長度,得到曲線C2

C. C1上各點的橫坐標縮短到原來的倍,縱坐標不變,再把得到的曲線向右平移個單位長度,得到曲線C2

D. C1上各點的橫坐標縮短到原來的倍,縱坐標不變,再把得到的曲線向左平移個單位長度,得到曲線C2

查看答案和解析>>

同步練習冊答案