18.在空間直角坐標系中,點A(1,2,3)與點B(-1,3,-2)的距離為$\sqrt{30}$.

分析 根據(jù)空間兩點間的距離公式進行求解即可.

解答 解:∵A(1,2,3)與點B(-1,3,-2),
∴|AB|=$\sqrt{(-1-1)^{2}+(3-2)^{2}+(-2-3)^{2}}$=$\sqrt{4+1+25}$=$\sqrt{30}$,
故答案為:$\sqrt{30}$.

點評 本題主要考查空間兩點間距離的求解,比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.過點M(1,2)的直線l與圓C:(x-3)2+(y-4)2=25交于A,B兩點,則|AB|的最小值是2$\sqrt{17}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若函數(shù)f(x)=2sin(ωx+$\frac{π}{4}$)(ω>0)與g(x)=2cos(2x-$\frac{π}{4}$)的對稱軸完全相同,則函數(shù)f(x)=2sin(ωx+$\frac{π}{4}$)(ω>0)在[0,π]上的遞增區(qū)間是 ( 。
A.[0,$\frac{π}{8}$]B.[0,$\frac{π}{4}$]C.[$\frac{π}{8}$,π]D.[$\frac{π}{4}$,π]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.利用計算機產(chǎn)生0~1之間的均勻隨機數(shù)a,b,則事件“$\left\{\begin{array}{l}{3a-1>0}\\{3b-1>0}\end{array}\right.$”發(fā)生的概率為( 。
A.$\frac{4}{9}$B.$\frac{1}{9}$C.$\frac{2}{3}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=2sinxcosx+2$\sqrt{3}$cos2x-$\sqrt{3}$
(1)求函數(shù)y=f(-2x)+1的最小正周期和單調(diào)遞減區(qū)間;
(2)已知△ABC中的三個內(nèi)角A,B,C所對的邊分別為a,b,c,若銳角A滿足f($\frac{A}{2}$-$\frac{π}{6}$)=$\sqrt{3}$,且a=8,sinB+sinC=$\frac{{13\sqrt{3}}}{16}$,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.如圖是函數(shù)y=f(x)的導(dǎo)函數(shù)y=f′(x)的圖象,則下面判斷正確的是(  )
A.在區(qū)間(-2,1)內(nèi)f(x)是增函數(shù)B.在(1,3)內(nèi)f(x)是減函數(shù)
C.在(4,5)內(nèi)f(x)是增函數(shù)D.在x=2時f(x)取到極小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知f(x)=x3-ax在(-∞,-1]上遞增,則a的取值范圍是( 。
A.a>3B.a≥3C.a<3D.a≤3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知某海濱浴場海浪的高度y(米)是時間t (0≤t≤24,單位:小時)函數(shù),記作:y=f(t),下表是某日各時的浪高數(shù)據(jù):
t(時)03691215182124
y(米)1.410.880.390.911.380.900.420.891.40
經(jīng)長期觀察,y=f(t)的曲線,可以近似地看成函數(shù)y=Acos(ωt)+b的圖象.
(1)根據(jù)以上數(shù)據(jù)(對浪高采用精確到0.1的數(shù)據(jù)),求出函數(shù)y=Acos(ωt)+b的最小正周期T,振幅A及函數(shù)表達式;
(2)依據(jù)規(guī)定,當海浪高度高于1米時才對沖浪愛好者開放,請依據(jù)(1)的結(jié)論,判斷一天內(nèi)的上午8:00時至晚上20:00時之間,有多少時間可供沖浪者進行運動?
(參考數(shù)據(jù)cos$\frac{7π}{16}$≈0.2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.sin$\frac{20π}{3}$=( 。
A.$-\frac{{\sqrt{3}}}{2}$B.$\frac{{\sqrt{3}}}{2}$C.$-\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

同步練習(xí)冊答案