【題目】某地因受天氣,春季禁漁等因素影響,政府規(guī)定每年的7月1日以后的100天為當年的捕魚期.某漁業(yè)捕撈隊對噸位為的20艘捕魚船一天的捕魚量進行了統(tǒng)計,如下表所示:
捕魚量(單位:噸) | |||||
頻數(shù) | 2 | 7 | 7 | 3 | 1 |
根據(jù)氣象局統(tǒng)計近20年此地每年100天的捕魚期內(nèi)的晴好天氣情況如下表(捕魚期內(nèi)的每個晴好天氣漁船方可捕魚,非晴好天氣不捕魚):
晴好天氣(單位:天) | |||||
頻數(shù) | 2 | 7 | 6 | 3 | 2 |
(同組數(shù)據(jù)以這組數(shù)據(jù)的中間值作代表)
(Ⅰ)估計漁業(yè)捕撈隊噸位為的漁船單次出海的捕魚量的平均數(shù);
(Ⅱ)已知當?shù)佤~價為2萬元/噸,此種捕魚船在捕魚期內(nèi)捕魚時,每天成本為10萬元/艘,若不捕魚,每天成本為2萬元/艘,若以(Ⅰ)中確定的作為上述噸位的捕魚船在晴好天氣捕魚時一天的捕魚量.
①請依據(jù)往年天氣統(tǒng)計數(shù)據(jù),試估計一艘此種捕魚船年利潤不少于1600萬元的概率;
②設今后3年中,此種捕魚船每年捕魚情況一樣,記一艘此種捕魚船年利潤不少于1600萬元的年數(shù)為,求的分布列和期望.
【答案】(Ⅰ)16噸;(Ⅱ)①;②見解析.
【解析】
(Ⅰ)根據(jù)頻數(shù)分布表計算單次出海的捕魚量的平均數(shù);
(Ⅱ)①設每年100天的捕魚期內(nèi)晴好天氣天數(shù)為,利潤為,可得捕魚期內(nèi)的晴好天氣天數(shù)不低于75天,從而可得結果;
②由題可知:隨機變量的可能取值為0,1,2,3,且~ ,從而可得的分布列和期望.
(Ⅰ)此噸位的捕魚船一天的捕魚量的平均數(shù)為:
噸.
(Ⅱ)①設每年100天的捕魚期內(nèi)晴好天氣天數(shù)為,
則年利潤為,
由得: ,
一艘此種捕魚船年利潤不少于1600萬元,即捕魚期內(nèi)的晴好天氣天數(shù)不低于75天
又100天的捕魚期內(nèi)的晴好天氣天數(shù)不低于75天的頻率為
預測一艘此種捕魚船年利潤不少于1600萬元的概率為.
②由題可知:隨機變量的可能取值為0,1,2,3,且 ,
,
,
,
,
的分布列為:
X | 0 | 1 | 2 | 3 |
P |
.
科目:高中數(shù)學 來源: 題型:
【題目】“科技引領,布局未來”科技研發(fā)是企業(yè)發(fā)展的驅動力量。年,某企業(yè)連續(xù)年累計研發(fā)投入搭億元,我們將研發(fā)投入與經(jīng)營投入的比值記為研發(fā)投入占營收比,這年間的研發(fā)投入(單位:十億元)用右圖中的折現(xiàn)圖表示,根據(jù)折線圖和條形圖,下列結論錯誤的使( )
A. 年至年研發(fā)投入占營收比增量相比年至年增量大
B. 年至年研發(fā)投入增量相比年至年增量小
C. 該企業(yè)連續(xù)年研發(fā)投入逐年增加
D. 該企業(yè)來連續(xù)年來研發(fā)投入占營收比逐年增加
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在一次“綜藝類和體育類節(jié)目,哪一類節(jié)目受中學生歡迎”的調查中,隨機調查了男女各100名學生,其中女同學中有73人更愛看綜藝類節(jié)目,另外27人更愛看體育類節(jié)目;男同學中有42人更愛看綜藝類節(jié)目,另外58人更愛看體育類節(jié)目.
(1)根據(jù)以上數(shù)據(jù)填寫如下列聯(lián)表:
綜藝類 | 體育類 | 總計 | |
女 | |||
男 | |||
總計 |
(2)試判斷是否有的把握認為“中學生更愛看綜藝類節(jié)目還是體育類節(jié)目與性別有關”.
參考公式:,其中.
臨界值表:
0.025 | 0.01 | 0.005 | 0.001 | |
5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知雙曲線C:與雙曲線有相同的漸近線,且雙曲線C過點.
(1)若雙曲線C的左、右焦點分別為,,雙曲線C上有一點P,使得,求△的面積;
(2)過雙曲線C的右焦點作直線l與雙曲線右支交于A,B兩點,若△的周長是,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,已知曲線(為參數(shù)),.以原點為極點,軸的非負半軸為極軸建立極坐標系.
(I)寫出曲線與圓的極坐標方程;
(II)在極坐標系中,已知射線分別與曲線及圓相交于,當時,求的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設λ是正實數(shù),(1+λx)20的二項展開式為a0+a1x+a2x2+…+a20x20,其中a0,a1,…,a20 ,…,均為常數(shù)
(1)若a3=12a2,求λ的值;
(2)若a5≥an對一切n∈{0,1,…,20}均成立,求λ的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某水產(chǎn)品經(jīng)銷商銷售某種鮮魚,售價為每千克元,成本為每千克元,銷售宗旨是當天進貨當天銷售,如果當天賣不完,那么未售出的部分全部處理,平均每千克損失元.根據(jù)以往的市場調查,將市場日需求量(單位:千克)按,,,,進行分組,得到如圖的頻率分布直方圖.
(Ⅰ)未來連續(xù)三天內(nèi),連續(xù)兩天該種鮮錢的日需求量不低于千克,而另一天的日需求量低于千克的概率;
(Ⅱ)在頻率分布直方圖的日需求量分組中,以各組區(qū)間的中點值代表該組的各個值,并以日需求量落入該區(qū)間的頻率作為日需求量取該區(qū)間中點值的概率.若經(jīng)銷商每日進貨千克,記經(jīng)銷商每日利潤為(單位:元),求的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某高中有高一新生500名,分成水平相同的兩類教學實驗,為對比教學效果,現(xiàn)用分層抽樣的方法從兩類學生中分別抽取了40人,60人進行測試
(1)求該學校高一新生兩類學生各多少人?
(2)經(jīng)過測試,得到以下三個數(shù)據(jù)圖表:
圖1:75分以上兩類參加測試學生成績的莖葉圖
圖2:100名測試學生成績的頻率分布直方圖
下圖表格:100名學生成績分布表:
①先填寫頻率分布表中的六個空格,然后將頻率分布直方圖(圖2)補充完整;
②該學校擬定從參加考試的79分以上(含79分)的類學生中隨機抽取2人代表學校參加市比賽,求抽到的2人分數(shù)都在80分以上的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線:的焦點為,為拋物線上一點,為坐標原點,的外接圓與拋物線的準線相切,且外接圓的周長為.
(1)求拋物線的方程;
(2)已知點,設不垂直于軸的直線與拋物線交于不同的兩點,,若,證明直線過定點并寫出定點坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com