【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點為極點,以軸正半軸為極軸,建立極坐標(biāo)系,直線的極坐標(biāo)方程為.

1)求的普通方程和的直角坐標(biāo)方程;

2)直線軸的交點為,經(jīng)過點的直線與曲線交于兩點,若,求直線的傾斜角.

【答案】(1) (2) .

【解析】

1)利用消去參數(shù)化曲線為普通方程,運用,即可化直線極坐標(biāo)方程為直角坐標(biāo)方程;

2)將直線方程化為具有幾何意義的參數(shù)方程,代入曲線方程,利用根與系數(shù)關(guān)系結(jié)合直線參數(shù)的幾何意義,即可求解.

1)曲線的普通方程為,

因為,所以,

直線的直角坐標(biāo)方程為.

2)點的坐標(biāo)為

設(shè)直線的參數(shù)方程為為參數(shù),為傾斜角),

聯(lián)立直線與曲線的方程得.

設(shè)對應(yīng)的參數(shù)分別為,則,

所以

,且滿足

故直線的傾斜角為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的短軸長為4,離心率為,斜率不為0的直線與橢圓相交于兩點(,異于橢圓的頂點),且以為直徑的圓過橢圓的右頂點.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)直線是否過定點,如果過定點,求出該定點的坐標(biāo);如果不過定點,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)當(dāng)時,證明:上恒成立;

2)若函數(shù)有唯一零點,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點,點P為平面上的動點,過點P作直線l的垂線,垂足為Q,且

求動點P的軌跡C的方程;

設(shè)點P的軌跡Cx軸交于點M,點A,B是軌跡C上異于點M的不同的兩點,且滿足,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,點在橢圓上,焦點為,圓O的直徑為

1)求橢圓C及圓O的標(biāo)準(zhǔn)方程;

2)設(shè)直線l與圓O相切于第一象限內(nèi)的點P,且直線l與橢圓C交于兩點.記 的面積為,證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某班有50名學(xué)生,一次考試后數(shù)學(xué)成績ξ~N(110,102),P(100≤ξ≤110)=0.34,則估計該班學(xué)生數(shù)學(xué)成績在120分以上的人數(shù)為 ( )

A. 10 B. 9 C. 8 D. 7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】袋中有大小相同的紅、黃兩種顏色的球各1個,從中任取1只,有放回地抽取3次.

求:(13只全是紅球的概率;

23只顏色全相同的概率;

33只顏色不全相同的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在底面為銳角三角形的直三棱柱中,是棱的中點,記直線與直線所成角為,直線與平面所成角為,二面角的平面角為,則(

A.B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時,求證:;

(2)討論函數(shù)零點的個數(shù).

查看答案和解析>>

同步練習(xí)冊答案