19.如圖,四棱錐A-BCDE中,F(xiàn)為AD的中點(diǎn),DC⊥平面ABC,CD∥BE,AB=AC=BC=CD=2BE.
(1)求證:EF⊥平面ACD;
(2)求平面ADE與平面ABD所成銳二面角的余弦值.

分析 (1)取AC中點(diǎn)O,連結(jié)BO、FO,推導(dǎo)出EF⊥OF,EF⊥AC,由此能證明EF⊥平面ACD.
(2)以O(shè)為原點(diǎn),OA為x軸,OB為y軸,OF為z軸,建立空間直角坐標(biāo)系,利用向量法能求出平面ADE與平面ABD所成銳二面角的余弦值.

解答 證明:(1)取AC中點(diǎn)O,連結(jié)BO、FO,
∵四棱錐A-BCDE中,F(xiàn)為AD的中點(diǎn),DC⊥平面ABC,
CD∥BE,AB=AC=BC=CD=2BE,
∴OF$\underset{∥}{=}$BE,BE⊥OB,∴四邊形CBEF是矩形,
∴EF⊥OF,EF⊥AC,
∵OF∩AC=O,∴EF⊥平面ACD.
解:(2)以O(shè)為原點(diǎn),OA為x軸,OB為y軸,OF為z軸,建立空間直角坐標(biāo)系,
設(shè)AB=AC=BC=CD=2BE=2,
則A(1,0,0),B(0,$\sqrt{3}$,0),D(-1,0,2),E(0,$\sqrt{3}$,1),
$\overrightarrow{AB}$=(-1,$\sqrt{3}$,0),$\overrightarrow{AD}$=(-2,0,2),$\overrightarrow{AE}$=(-1,$\sqrt{3},1$),
設(shè)平面ADE的法向量$\overrightarrow{n}$=(x,y,z),
則$\left\{\begin{array}{l}{\overrightarrow{AD}•\overrightarrow{n}=-2x+2z=0}\\{\overrightarrow{AE}•\overrightarrow{n}=-x+\sqrt{3}y+z=0}\end{array}\right.$,取x=1,得$\overrightarrow{n}$=(1,0,1),
設(shè)平面ABD的法向量$\overrightarrow{m}$=(a,b,c),
則$\left\{\begin{array}{l}{\overrightarrow{AB}•\overrightarrow{m}=-a+\sqrt{3}b=0}\\{\overrightarrow{AD}•\overrightarrow{m}=-2a+2c=0}\end{array}\right.$,取a=$\sqrt{3}$,得$\overrightarrow{m}$=($\sqrt{3},1,\sqrt{3}$),
設(shè)平面ADE與平面ABD所成銳二面角為θ,
則cosθ=$\frac{|\overrightarrow{m}•\overrightarrow{n}|}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{2\sqrt{3}}{\sqrt{2}•\sqrt{5}}$=$\frac{\sqrt{30}}{5}$.
∴平面ADE與平面ABD所成銳二面角的余弦值為$\frac{\sqrt{30}}{5}$.

點(diǎn)評(píng) 本題考查線面垂直的證明,考查二面角的余弦值的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意向量法的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.將1到n的n個(gè)正整數(shù)按下面的方法排成一個(gè)排列,要求:除左邊的第一個(gè)數(shù)外,每個(gè)數(shù)都與它左邊(未必相鄰)的某個(gè)數(shù)相差1,將此種排列稱為“n排列”.比如“2排列”為n=2時(shí),有1,2;和2,1;共2種排列.“3排列”為當(dāng)n=3時(shí),有1,2,3;2,1,3;2,3,1;3,2,1;共4種排列.
(1)請(qǐng)寫(xiě)出“4排列”的排列數(shù);
(2)問(wèn)所有“n排列”的結(jié)尾數(shù)只能是什么數(shù)?請(qǐng)加以證明;
(3)證明:“n排列”共有2n-1個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.對(duì)于不等式$\sqrt{{n}^{2}+1}$<n+1(n∈N*),某學(xué)生用數(shù)學(xué)歸納法證明如下:
(1)當(dāng)n=1時(shí),$\sqrt{{1}^{2}+1}$<1+1,不等式成立;
(2)假設(shè)當(dāng)n=k(k∈N*)時(shí)不等式成立,即$\sqrt{{k}^{2}+1}$<k+1,則當(dāng)n=k+1時(shí),$\sqrt{(k+1)^{2}+1}$=$\sqrt{{k}^{2}+2k+2}$$<\sqrt{{k}^{2}+2k+2+2k+2}$=$\sqrt{(k+2)^{2}}$=(k+1)+1;所以當(dāng)n=k+1時(shí),不等式$\sqrt{{n}^{2}+1}$<n+1成立.
上述證明中( 。
A.n=1驗(yàn)證不正確B.歸納假設(shè)不正確
C.從n=k到n=k+1的推理不正確D.證明過(guò)程完全正確

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.某單位進(jìn)行了主題為“你幸福嗎”的幸福指數(shù)問(wèn)卷調(diào)查,得到每個(gè)調(diào)查對(duì)象的幸福指數(shù)評(píng)分值(百分制).現(xiàn)從收到的調(diào)查表中隨機(jī)抽取20份進(jìn)行統(tǒng)計(jì),得到如圖所示的頻率分布表和頻率分布直方圖.
(Ⅰ)請(qǐng)完成題目中的頻率分布表,并補(bǔ)全題目中的頻率分布直方圖;
(Ⅱ)該單位將隨機(jī)邀請(qǐng)被問(wèn)卷調(diào)查的部分員工參加“幸福教育”的座談會(huì).在抽樣統(tǒng)計(jì)的這20人中,已知幸福指數(shù)評(píng)分值在區(qū)間(80,100]的5人中有2人被邀請(qǐng)參加座談,求其中幸福指數(shù)評(píng)分值在區(qū)間(80,90]的僅有1人被邀請(qǐng)的概率.
幸福指數(shù)評(píng)分值頻數(shù)頻率
[50,60]
(60,70]
(70,80]
(80,90]3
(90,100]
合  計(jì)201

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.某工廠加工某種零件的三道供需流程圖如圖所示,則該種零件可導(dǎo)致廢品的環(huán)節(jié)有( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.如圖,在四棱錐P-ABCD中,底面ABCD為直角梯形,且AD∥BC,∠ABC=90°,PA⊥面ABCD,若PA=AB=BC=$\frac{1}{2}$AD.
(1)求證:CD⊥平面PAC;
(2)側(cè)棱PA上中點(diǎn)E,求證:BE∥平面PCD;
(3)求二面角A-PD-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.在極坐標(biāo)系Ox中,曲線C1的方程為ρ=2sinθ,C2的方程為ρ=8sinθ,射線θ=$\frac{π}{3}$與C1的異于極點(diǎn)的交點(diǎn)為A,與C2的異于極點(diǎn)的交點(diǎn)為B,求|AB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.拋擲兩枚質(zhì)地均勻的骰子,向上的點(diǎn)數(shù)之和為7的概率是( 。
A.$\frac{1}{9}$B.$\frac{1}{6}$C.$\frac{1}{18}$D.$\frac{1}{12}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.定義行列式運(yùn)算$|{\begin{array}{l}{a_1}&{a_2}\\{{a_3}}&{a_4}\end{array}}|$=a1a4-a2a3.將函數(shù)f(x)=$|{\begin{array}{l}{sin2x}&{\sqrt{3}}\\{cos2x}&1\end{array}}|$的圖象向右平移$\frac{π}{6}$個(gè)單位后,所得函數(shù)圖象的一個(gè)對(duì)稱軸是(  )
A.x=$\frac{7π}{12}$B.x=$\frac{π}{2}$C.x=$\frac{5π}{12}$D.$x=\frac{π}{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案