若函數(shù)f(x)=x3-x,則f(x)的奇偶性為
奇函數(shù)
奇函數(shù)
分析:要判斷函數(shù)的奇偶性,只要檢驗f(-x)與f(x)的關(guān)系即可判斷
解答:解:∵f(-x)=(-x)3-(-x)=-x3+x=-f(x)
∴f(x)為奇函數(shù)
故答案為:奇函數(shù)
點評:本題主要考查了函數(shù)的奇偶性的判斷,屬于基礎(chǔ)試題
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=x3+
1
x
,則
 
lim
△x→0
f(△x-1)+f(1)
2△x
等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=x3+3x-1,x∈[-1,l],則下列判斷正確的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=x3+3mx2+nx+m2為奇函數(shù),則實數(shù)m的值為
0
0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=x3-3bx+b在區(qū)間(0,1)內(nèi)有極小值,則b的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=x3-3x+1在閉區(qū)間[-3,0]上的最大值,最小值分別為M,m,則M+m=
-14
-14

查看答案和解析>>

同步練習(xí)冊答案