10.已知等比數(shù)列{an}的前6項和S6=21,且4a1、$\frac{3}{2}$a2、a2成等差數(shù)列,則an=$\frac{{{2^{n-1}}}}{3}$.

分析 設(shè)公比為q,由題意和等差中項的性質(zhì)列出方程,化簡后求出q,由條件和等比數(shù)列的前n項和公式列出方程,化簡后求出a1,由等比數(shù)列的通項公式1求出an

解答 解:設(shè)公比為q,
因為4a1、$\frac{3}{2}$a2、a2成等差數(shù)列,
所以2×$\frac{3}{2}$a2=4a1+a2,即a2=2a1,則q=2,
由S6=21得,$\frac{{a}_{1}(1-{2}^{6})}{1-2}=21$,解得a1=$\frac{1}{3}$,
所以an=$\frac{{{2^{n-1}}}}{3}$,
故答案為:$\frac{{{2^{n-1}}}}{3}$.

點評 本題考查了等比數(shù)列的通項公式、前n項和公式,以及等差中項的性質(zhì)的應(yīng)用,考查方程思想,化簡、計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.若對任意x∈(0,$\frac{1}{2}$),恒有4x<logax(a>0且a≠1),則實數(shù)a的取值范圍是[$\frac{\sqrt{2}}{2}$,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.計算:
(1)(log43+log83)×$\frac{lg2}{lg3}$+log535-2log5$\frac{7}{3}$+ log57-log51.8
(2)$\root{4}{{(3-π{)^4}}}$+0.008${\;}^{-\frac{1}{3}}$-0.25${\;}^{\frac{1}{2}}$×($\frac{1}{{\sqrt{2}}}$)-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知集合A={x|(x-3)(x+2)<0},B={-4,-1,0,1,3},則A∩B=( 。
A.{-1,0,1}B.{-1,0,1,3}C.{0,1}D.{0,1,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.函數(shù)f(x)的導(dǎo)函數(shù)f′(x),對?x∈R,都有f′(x)>f(x)成立,若f(2)=e2,則不等式f(x)>ex的解是( 。
A.(2,+∞)B.(0,1)C.(1,+∞)D.(0,ln2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=ax-lnx(a∈R).
(1)當(dāng)a=1時,求f(x)的最小值;
(2)若存在x∈[1,3],使$\frac{f(x)}{{x}^{2}}$+lnx=2成立,求a的取值范圍;
(3)若對任意的x∈[1,+∞),有f(x)≥f($\frac{1}{x}$)成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.若集合A={x|-1≤2x+1≤3},B=$\{x|\frac{x-2}{x}≤0\}$,則A∪B={x|-1≤x≤2}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.若變量x,y滿足約束條件$\left\{\begin{array}{l}x-y+1≤0\\ x+2y-8≤0\\ x≥0\end{array}\right.$,則z=3x+y的取值范圍是[1,9].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.四棱柱ABCD-A1B1C1D1的所有面均是邊長為1的菱形,∠DAB=∠A1AB=∠A1AD=60°,則對角線AC1的長為( 。
A.2B.4C.$\sqrt{6}$D.$\sqrt{5}$

查看答案和解析>>

同步練習(xí)冊答案