【題目】由中央電視臺(tái)綜合頻道(CCTV-1)和唯眾傳媒聯(lián)合制作的《開講啦》是中國(guó)首檔青年電視公開課。每期節(jié)目由一位知名人士講述自己的故事,分享他們對(duì)于生活和生命的感悟,給予中國(guó)青年現(xiàn)實(shí)的討論和心靈的滋養(yǎng),討論青年們的人生問題,同時(shí)也在討論青春中國(guó)的社會(huì)問題,受到青年觀眾的喜愛,為了了解觀眾對(duì)節(jié)目的喜愛程度,電視臺(tái)隨機(jī)調(diào)查了兩個(gè)地區(qū)的名觀眾,得到如下的列聯(lián)表:

已知在被調(diào)查的名觀眾中隨機(jī)抽取名,該觀眾是地區(qū)當(dāng)中非常滿意的觀眾的概率為,且.

(1)現(xiàn)從名觀眾中用分層抽樣的方法抽取名進(jìn)行問卷調(diào)查,則應(yīng)抽取滿意地區(qū)的人數(shù)各是多少.

(2)完成上述表格,并根據(jù)表格判斷是否有的把握認(rèn)為觀眾的滿意程度與所在地區(qū)有關(guān)系.

(3)若以抽樣調(diào)查的頻率為概率,從地區(qū)隨機(jī)抽取人,設(shè)抽到的觀眾“非常滿意”的人數(shù)為,求的分布列和期望.

附:參考公式:

【答案】(1)3,4(2) 沒有的把握認(rèn)為觀眾的滿意程度與所在地區(qū)有關(guān)系(3)見解析

【解析】試題分析:(1)利用 觀眾是地區(qū)當(dāng)中非常滿意的觀眾的概率為 ,計(jì)算得的值,再利用總數(shù)和求得的值.由此求得各區(qū)抽取人數(shù)(2)利用已知填寫好表格,并計(jì)算得,所以沒有的把握認(rèn)為觀眾的滿意程度與所在地區(qū)有關(guān)系.(3)利用二項(xiàng)分布概率計(jì)算公式計(jì)算得分布列并求得期望.

試題解析:

(1)由題意,得,所以,所以,因?yàn)?/span>,所以, ,

A地抽取,B地抽取,

(2)

所以沒有的把握認(rèn)為觀眾的滿意程度與所在地區(qū)有關(guān)系.

(3) 地區(qū)隨機(jī)抽取人,抽到的觀眾“非常滿意”的概率為

隨機(jī)抽取人, 的可能取值為

,

,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

(1)處取得極值,求的值;

(2)設(shè),試討論函數(shù)的單調(diào)性;

(3)當(dāng)時(shí),若存在正實(shí)數(shù)滿足,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知直線和圓是直線上一點(diǎn),過點(diǎn)作圓的兩條切線,切點(diǎn)分別為.

1)若,求點(diǎn)坐標(biāo);

2)若圓上存在點(diǎn),使得,求點(diǎn)的橫坐標(biāo)的取值范圍;

3)設(shè)線段的中點(diǎn)為軸的交點(diǎn)為,求線段長(zhǎng)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法中正確的有______個(gè).

①空間中三條直線交于一點(diǎn),則這三條直線共面;

②一個(gè)平行四邊形確定一個(gè)平面;

③若一個(gè)角的兩邊分別平行于另一個(gè)角的兩邊,則這兩個(gè)角相等;

④已知兩個(gè)不同的平面,若,,且,則點(diǎn)在直線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知圓過坐標(biāo)原點(diǎn)且圓心在曲線.

1)求圓面積的最小值;

2)設(shè)直線與圓交于不同的兩點(diǎn),且,求圓的方程;

3)設(shè)直線與(2)中所求圓交于點(diǎn)、,為直線上的動(dòng)點(diǎn),直線與圓的另一個(gè)交點(diǎn)分別為,,求證:直線過定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于的方程有兩個(gè)不等的負(fù)根;關(guān)于的方程無實(shí)根,若為真,為假,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列是以為公差的等差數(shù)列,數(shù)列的前項(xiàng)和為,滿足, ,則不可能是(  )

A. -1 B. 0

C. 2 D. 3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

)求函數(shù)的單調(diào)區(qū)間.

)若對(duì)任意, , 恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓為參數(shù)),上的動(dòng)點(diǎn),且滿足為坐標(biāo)原點(diǎn)),以原點(diǎn)為極點(diǎn),以軸的正半軸為極軸建立極坐標(biāo)系,點(diǎn)的極坐標(biāo)為

(1)求線段的中點(diǎn)的軌跡的普通方程;

(2)證明:為定值,并求面積的最大值。

查看答案和解析>>

同步練習(xí)冊(cè)答案