精英家教網 > 高中數學 > 題目詳情
17.設復數z=$\frac{2+i}{(1+i)^{2}}$(i為虛數單位),則z的共軛復數的虛部是1.

分析 直接利用復數代數形式的乘除運算化簡,再求出$\overline{z}$得答案.

解答 解:由z=$\frac{2+i}{(1+i)^{2}}$=$\frac{2+i}{2i}=\frac{(2+i)(-i)}{-2{i}^{2}}=\frac{1}{2}-i$,
∴$\overline{z}=\frac{1}{2}+i$.
∴z的共軛復數的虛部是1.
故答案為:1.

點評 本題考查復數代數形式的乘除運算,考查了復數的基本概念,是基礎題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

7.下面四個推理,不屬于演繹推理的是(  )
A.因為函數y=sinx(x∈R)的值域為[-1,1],2x-1∈R,所以y=sin(2x-1)(x∈R)的值域也為[-1,1]
B.昆蟲都是6條腿,竹節(jié)蟲是昆蟲,所以竹節(jié)蟲有6條腿
C.在平面中,對于三條不同的直線a,b,c,若a∥b,b∥c則a∥c,將此結論放到空間中也是如此
D.如果一個人在墻上寫字的位置與他的視線平行,那么,墻上字跡離地的高度大約是他的身高,兇手在墻上寫字的位置與他的視線平行,福爾摩斯量得墻壁上的字跡距地面六尺多,于是,他得出了兇手身高六尺多的結論

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

8.如圖,在五棱錐F-ABCDE中,平面AEF⊥平面ABCDE,AF=EF=1,AB=DE=2,BC=CD=3,且∠AFE=∠ABC=∠BCD=∠CDE=90°.
(1)已知點G在線段FD上,確定G的位置,使得AG∥平面BCF;
(2)點M,N分別在線段DE,BC上,若沿直線MN將四邊形MNCD向上翻折,D與F恰好重合,求三棱錐A-BMF的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

5.已知等比數列{an}的前n項和為Sn,公比q=$\frac{1}{2}$,a8=1,則S8=255.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

12.已知當x>0時,不等式x2-mx+4>0恒成立,則實數m的取值范圍是(-∞,4).

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

2.已知a>0,x,y滿足約束條件$\left\{\begin{array}{l}{x≥1}\\{x+y≤4}\\{y≥a(x-4)}\end{array}\right.$,若z=2x+y的最小值是-1,則a=( 。
A.$\frac{1}{4}$B.$\frac{1}{2}$C.2D.1

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

9.(1)求定積分${∫}_{-2}^{1}$|x2-2|dx的值;
(2)若復數z1=a+2i(a∈R),z2=3-4i,且$\frac{{z}_{1}}{{z}_{2}}$為純虛數,求|z1|

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

6.若橢圓$\frac{x^2}{{{m^2}+1}}+{y^2}=1$的離心率為$\frac{{\sqrt{3}}}{2}$,則它的長半軸長為4.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

7.在平面直角坐標系xOy中,已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{2}}{2}$,且右焦點F到左準線的距離為6$\sqrt{2}$.
(1)求橢圓C的標準方程;
(2)設A為橢圓C的左頂點,P為橢圓C上位于x軸上方的點,直線PA交y軸于點M,過點F作MF的垂線,交y軸于點N.
(i)當直線PA的斜率為$\frac{1}{2}$時,求△MFN的外接圓的方程;
(ii)設直線AN交橢圓C于另一點Q,求△PAQ的面積的最大值.

查看答案和解析>>

同步練習冊答案