【題目】已知橢圓C:過點
,其左右焦點分別為
,
,三角形
的面積為
.
Ⅰ
求橢圓C的方程;
Ⅱ
已知A,B是橢圓C上的兩個動點且不與坐標(biāo)原點O共線,若
的角平分線總垂直于x軸,求證:直線AB與兩坐標(biāo)軸圍成的三角形一定是等腰三角形.
【答案】Ⅰ
Ⅱ
見解析
【解析】
Ⅰ
由題意可得
,解得
,
,則橢圓方程可求;
Ⅱ
設(shè)直線PA的方程為
,聯(lián)立直線方程和橢圓方程,求得A的橫坐標(biāo),同理求得B的橫坐標(biāo),進(jìn)一步求得A、B的縱坐標(biāo)的差,代入斜率公式得答案.
Ⅰ
由題意可得
,解得
,
,
故橢圓C的方程為,
證明Ⅱ
:設(shè)直線AP的斜率為k,則直線BP的斜率為
,
設(shè),
,直線PA的方程為
,即
聯(lián)立,得
.
,即
設(shè)直線PB的方程為,同理求得
,
直線AB的斜率
,
易知l與在兩坐標(biāo)軸的截距絕對值相等且都不為0,
直線AB與兩坐標(biāo)軸圍成的三角形一定是等腰三角形.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某高校在2012年的自主招生考試成績中隨機(jī)抽取名中學(xué)生的筆試成績,按成績分組,得到的頻率分布表如表所示.
組號 | 分組 | 頻數(shù) | 頻率 |
第1組 | 5 | ||
第2組 | ① | ||
第3組 | 30 | ② | |
第4組 | 20 | ||
第5組 | 10 |
(1)請先求出頻率分布表中位置的相應(yīng)數(shù)據(jù),再完成頻率分布直方圖;
(2)為了能選拔出最優(yōu)秀的學(xué)生,高校決定在筆試成績高的第組中用分層抽樣抽取名學(xué)生進(jìn)入第二輪面試,求第3、4、5組每組各抽取多少名學(xué)生進(jìn)入第二輪面試;
(3)在(2)的前提下,學(xué)校決定在名學(xué)生中隨機(jī)抽取
名學(xué)生接受
考官進(jìn)行面試,求:第
組至少有一名學(xué)生被考官
面試的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),x∈[0,
],若函數(shù)F(x)=f(x)-3的所有零點依次記為
,且
,則
( )
A.B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在梯形ABCD中,AB∥CD,AD=DC=CB=a,∠ABC=,平面ACFE⊥平面ABCD,四邊形ACFE是矩形,AE=AD,點M在線段EF上。
(1)求證:BC⊥平面ACFE;
(2)若,求證:AM∥平面BDF.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面四邊形ABCD,,
,
,將
沿BD翻折到與面BCD垂直的位置.
Ⅰ
證明:
面ABC;
Ⅱ
若E為AD中點,求二面角
的大�。�
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓,直線
,
.
(1)證明:不論取任何實數(shù),直線
與圓
恒交于兩點;
(2)當(dāng)直線被圓
截得的弦長最短時,求此最短弦長及直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了了解某高校學(xué)生喜歡使用手機(jī)支付是否與性別有關(guān),抽取了部分學(xué)生作為樣本,統(tǒng)計后作出如圖所示的等高條形圖,則下列說法正確的是( )
A.喜歡使用手機(jī)支付與性別無關(guān)
B.樣本中男生喜歡使用手機(jī)支付的約
C.樣本中女生喜歡使用手機(jī)支付的人數(shù)比男生多
D.女生比男生喜歡使用手機(jī)支付的可能性大些
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:
左、右焦點分別為
,
,短軸的兩個端點分別為
,
,點
在橢圓
上,且滿足
,當(dāng)
變化時,給出下列四個命題:①點
的軌跡關(guān)于
軸對稱;②存在
使得橢圓
上滿足條件的點
僅有兩個;③
的最小值為2;④
最大值為
,其中正確命題的序號是______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線
的參數(shù)方程為
(
為參數(shù)).以坐標(biāo)原點為極點,以
軸正半軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
.
(1)求曲線的普通方程與曲線
的直角坐標(biāo)方程;
(2)若與
交于
、
兩點,點
的極坐標(biāo)為
,求
的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com