在數(shù)列1,3,6,10,15,x,28中,x的值為(  )
A、17B、20
C、21D、以上都可以
考點:數(shù)列的概念及簡單表示法
專題:點列、遞歸數(shù)列與數(shù)學歸納法
分析:通過已知數(shù)列的前幾項可歸納出,相鄰兩項的差是等差數(shù)列2,3,4,5,6,7.所以可得到x-15=6,從而求出x的值.
解答: 解:根據(jù)數(shù)列前幾項可知,
相鄰后一項減前一項的差組成的數(shù)列是等差數(shù)列,
2,3,4,5,6,7.
∴x-15=6,
∴x=21.
故選:C.
點評:本體考查數(shù)列的概念與表示,以及數(shù)列遞推式的應用,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知sinθ-cosθ=-
1
5
,則tanθ=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點P(x,y)是滿足
x+4y≥4
x-2y>-2
x≤4
的區(qū)域內(nèi)的動點,則
y+2
x+1
的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設f(x)(x∈R)為偶函數(shù),且f(x-
3
2
)=f(x+
1
2
)恒成立,當x∈[2,3]時,f(x)=x,則當x∈[-2,0]時,f(x)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)是定義在(-∞,0)上的可導函數(shù),其導函數(shù)為f′(x),且有f(x)+xf′(x)<x,則不等式(x+2014)f(x+2014)+2f(-2)>0的解集為( 。
A、(-∞,-2012)
B、(-2012,0)
C、(-∞,-2016)
D、(-2016,0)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}是等差數(shù)列,a2=2,a5=8,則公差d的值為( 。
A、
1
2
B、-
1
2
C、2
D、-2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知△ABC的三邊為a,b,c.
(1)若S△ABC=
a2+b2-c2
4
,求∠C的大。
(2)若tanA:tanB=a2:b2,判斷△ABC的形狀;
(3)若2cosAsinB=sinC,判斷△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

集合{a,
b
a
,1}也表示為集合{a2,a+b,0},求a,b的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=log4(2x+3-x2),若f(x)=m有兩個不同的實數(shù)根,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習冊答案