對于函數(shù)f(x),如果存在銳角θ,使得f(x)的圖像繞坐標(biāo)原點(diǎn)逆時(shí)針旋轉(zhuǎn)角θ,所得曲線仍是一函數(shù),則稱函數(shù)f(x)具備角θ的旋轉(zhuǎn)性,下列函數(shù)具備角的旋轉(zhuǎn)性的是( )
A.y= B.y=ln x C.y=x D.y=x2
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
設(shè)函數(shù)f(x)是定義在R上的偶函數(shù),且對任意的x∈R恒有f(x+1)=f(x-1),已知當(dāng)x∈[0,1]時(shí),f(x)=1-x,則:
①2是函數(shù)f(x)的周期;
②函數(shù)f(x)在(1,2)上遞減,在(2,3)上遞增;
③函數(shù)f(x)的最大值是1,最小值是0;
④當(dāng)x∈(3,4)時(shí),f(x)=x-3.
其中所有正確命題的序號(hào)是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知函數(shù)f(x)=loga|x|在(0,+∞)上單調(diào)遞增,則( )
A.f(3)<f(-2)<f(1) B.f(1)<f(-2)<f(3)
C.f(-2)<f(1)<f(3) D.f(3)<f(1)<f(-2)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
某大樓共有12層,有11人在第1層上了電梯,他們分別要去第2至第12層,每層1人.因特殊原因,電梯只允許停1次,只可使1人如愿到達(dá),其余10人都要步行到達(dá)所去的樓層.假設(shè)乘客每向下步行1層的“不滿意度”增量為1,每向上步行1層的“不滿意度”增量為2,10人的“不滿意度”之和記為S.則S最小時(shí),電梯所停的樓層是( )
A.7層 B.8層 C.9層 D.10層
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知f(x)與g(x)是定義在R上的兩個(gè)可導(dǎo)函數(shù),若f(x),g(x)滿足f′(x)=g′(x),則f(x)與g(x)滿足( )
A.f(x)=g(x) B.f(x)=g(x)=0
C.f(x)-g(x)為常數(shù)函數(shù) D.f(x)+g(x)為常數(shù)函數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知函數(shù)f(x)=x-,g(x)=a(2-ln x)(a>0).若曲線y=f(x)與曲線y=g(x)在x=1處的切線斜率相同,求a的值,并判斷兩條切線是否為同一條直線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
設(shè)函數(shù)f(x)在R上可導(dǎo),其導(dǎo)函數(shù)是f′(x),且函數(shù)f(x)在x=-2處取得極小值,則函數(shù)y=xf′(x)的圖像可能是( )
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com