3.欲將正六邊形的各邊和各條對角線都染為n種顏色之一,使得以正六邊形的任何3個頂點作為頂點的三角形有3種不同顏色的邊,并且不同的三角形使用不同的3色組合,則n的最小值是7?

分析 先確定20≤Cn3,得n≥6,再說明n=6是不能構(gòu)造出來的,即可得出結(jié)論.

解答 解:從六個頂點選出3個頂點組成三角形,共有C63=20(種),這也是所有的三角形種數(shù).
由于每個三角形使用不同的3色組合,那么這樣的組合最多有Cn3
三角形數(shù)不能超過組合種數(shù),于是有20≤Cn3,得n≥6.
當(dāng)然,n=6是不能構(gòu)造出來的,因為假設(shè)有兩個頂點連的一邊染色紅,那么剩下染紅色的邊必定在剩下的4個頂點中(否則與“任何3個頂點作為頂點的三角形有3種不同顏色的邊”矛盾)
這樣下去得出一種顏色最多存在3邊,由于共C62=15條邊
而15÷6=2…3,必有3種顏色每種各染了三條邊,設(shè)為1,2,3三色,
不妨AB,CD,EF染1,BC,DE,AF染2,
則剩下4種色怎么染都有三角形使用相同的3色組合,
所以n≥7,
故答案為:7.

點評 本題考查組合知識,考查反證法的運用,考查學(xué)生分析解決問題的能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知集合A={x|x2-2x-3≤0.x∈R},B={m-1≤x≤5-m,m∈R}
(1)若A∩B={x|0≤x≤3},求實數(shù)m的值;
(2)若A⊆∁RB,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.若x∈[-$\frac{π}{3}$,$\frac{π}{4}$],求函數(shù)y=$\frac{1}{co{s}^{2}x}$+2tanx+1的最值及相應(yīng)的x值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知sin75°=$\frac{\sqrt{6}-\sqrt{2}}{4}$,求cos15°,cos165°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)y=g(x)的圖象過點(4,5),且在R上單調(diào)遞增.若函數(shù)f(x)=$\left\{\begin{array}{l}{{g}^{-1}(x+2)(x≥3)}\\{(a-1)x+1(x<3)}\end{array}\right.$存在反函數(shù),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.?dāng)S2個骰子,至少有一個1點的概率為$\frac{11}{36}$.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知$\underset{lim}{n→∞}$an=3,$\underset{lim}{n→∞}$bn=$\frac{1}{3}$,則$\underset{lim}{n→∞}$$\frac{{a}_{n}-3_{n}}{2{a}_{n}}$=$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.甲、乙兩袋裝有大小相同的紅球和白球,其中甲袋裝有1個紅球,4個白球;乙袋裝有2個紅球,3個白球.現(xiàn)從甲、乙兩袋中各任取2個球.
(Ⅰ)用ξ表示取到的4個球中紅球的個數(shù),求ξ的分布列及ξ的數(shù)學(xué)期望;
(Ⅱ)求取到的4個球中至少有2個紅球的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.定義集合運算A⊙B={c|c=a+b,a∈A,b∈B},設(shè)A={0,1,2},B={3,4,5},則集合A⊙B的真子集個數(shù)為( 。
A.63B.31C.15D.16

查看答案和解析>>

同步練習(xí)冊答案