9.若a=log0.60.3,b=0.60.3,則(  )
A.a>1>bB.a>b>1C.b>a>1D.b>1>a

分析 利用對數(shù)函數(shù)的單調(diào)性即可得出.

解答 解:∵a=log0.60.3>log0.60.6=1>b=0.60.3,
則a>1>b,
故選:A.

點評 本題考查了對數(shù)函數(shù)的單調(diào)性,考查了推理能力與計算能力,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

19.在“雙11”促銷活動中,某商場對11月11日9時到14時的銷售額進行統(tǒng)計,其頻率分布直方圖如圖所示,已知12時到14時的銷售額為14萬元,則9時到11時的銷售額為(  )
A.3萬元B.6萬元C.8萬元D.10萬元

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.已知函數(shù)f(x)=cosxsinx,給出下列四個結(jié)論:
①若f(x1)=-f(x2),則x1=-x2
②f(x)的最小正周期是2π;
③f(x)在區(qū)間[-$\frac{π}{4}$,$\frac{π}{4}$]上是增函數(shù);
④f(x)的圖象關于直線x=$\frac{3π}{4}$對稱.
其中正確的結(jié)論是③④.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.(1)求函數(shù)$f(x)=\frac{1}{{{{sin}^2}x}}+\frac{4}{{{{cos}^2}x}}$,$x∈(0,\frac{π}{2})$的最小值.
(2)已知不等式ax2+bx+c>0的解集為(α,β),且0<α<β,試用α,β表示不等式cx2+bx+a<0的解集.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知集合A={x|x2-x-6<0},B={x|x2+2x-8>0},則A∩B=(  )
A.(-2,3)B.(-4,2)C.(-4,3)D.(2,3)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{^{2}}=1$兩漸近線的夾角θ滿足$sinθ=\frac{4}{5}$,焦點到漸近線的距離d=1,則該雙曲線的焦距為( 。
A.$\sqrt{5}$B.$\frac{\sqrt{5}}{2}$或$\sqrt{5}$C.$\sqrt{5}$或$2\sqrt{5}$D.以上都不是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.設命題p:實數(shù)x滿足x2-4ax+3a2<0(a>0),命題q:實數(shù)x滿足$\frac{x-3}{x-2}≤0$.
(1)若命題p的解集為P,命題q的解集為Q,當a=1時,求P∩Q;
(2)若¬p是¬q的充分不必要條件,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.如圖5所示,四邊形ABCD是邊長為2的正方形,四邊形BDFE是平行四邊形,點M,N分別是BE,CF的中點.
(1)求證:MN∥平面ABCD;
(2)若△ABE是等邊三角形且平面ABE⊥平面ABCD,記三棱柱E-ABF的體積為S1,四棱錐F-ABCD的體積為S2,求$\frac{S_1}{S_2}$的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.已知n為正偶數(shù),用數(shù)學歸納法證明1-$\frac{1}{2}$+$\frac{1}{3}$-$\frac{1}{4}$+…-$\frac{1}{n}$=2($\frac{1}{n+2}$+$\frac{1}{n+4}$+…+$\frac{1}{2n}$)時,若已假設n=k(k≥2且k為偶數(shù))時等式成立,則還需要用歸納假設再證n=k+2時等式成立.

查看答案和解析>>

同步練習冊答案