8.函數(shù)f(x)由下表定義:
x25314
f(x)12345
若a0=1,an+1=f(an),n=0,1,2,…,則a2016=1.

分析 由表格可知:a0=1.a(chǎn)1=f(a0)=f(1)=4,a2=f(a1)=5,a3=f(a2)=f(5)=2,a4=f(a3)=1,…,可得an+4=an.即可得出.

解答 解:由表格可知:a0=1.
a1=f(a0)=f(1)=4,
a2=f(a1)=f(4)=5,
a3=f(a2)=f(5)=2,
a4=f(a3)=f(2)=1,
…,
∴an+4=an
∴a2016=a4×504=a0=1.
故答案為:1.

點(diǎn)評 本題考查了遞推關(guān)系的應(yīng)用、數(shù)列的周期性,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.命題“若實(shí)數(shù)a,b滿足a+b<7,則a=2且b=3”的否命題是若實(shí)數(shù)a,b滿足a+b≥7,則a≠2或b≠3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.在等比數(shù)列{an}中,a3=4,a7=12,則a11=( 。
A.16B.18C.36D.48

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知等差數(shù)列{an}中,公差d>0,且滿足:a2•a3=45,a1+a4=14.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列$\left\{{\frac{1}{{{a_n}•{a_{n+1}}}}}\right\}$的前n項(xiàng)和為Sn,令f(n)=$\frac{S_n}{n+16}$(n∈N*),求f(n)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.由0、1、2、3、4、5組成沒有重復(fù)數(shù)字的三位偶數(shù)有( 。
A.720個(gè)B.600個(gè)C.60個(gè)D.52個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=-x+b的圖象過點(diǎn)(2,1),若不等式f(x)≥x2+x-5的解集為A,且A⊆(-∞,a].
(1)求a的取值范圍;
(2)解不等式$\frac{{{x^2}-(a+3)x+2a+3}}{f(x)}$<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.設(shè)圓C的極坐標(biāo)方程為ρ=2,以極點(diǎn)為直角坐標(biāo)系的原點(diǎn),極軸為x軸正半軸,兩坐標(biāo)系長度單位一致,建立平面直角坐標(biāo)系.過圓C上的一點(diǎn)M(m,s)作垂直于x軸的直線l:x=m,設(shè)l與x軸交于點(diǎn)N,向量$\overrightarrow{OQ}=\overrightarrow{OM}+\overrightarrow{ON}$.
(Ⅰ)求動(dòng)點(diǎn)Q的軌跡方程;
(Ⅱ)設(shè)點(diǎn)R(1,0),求$|{\overrightarrow{RQ}}|$的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=log2x-1的定義域?yàn)閇1,16],函數(shù)g(x)=[f(x)]2+af(x2)+2
(1)求函數(shù)y=g(x)的定義域;
(2)求函數(shù)y=g(x)的最小值;
(3)若函數(shù)y=g(x)的圖象恒在x軸的上方,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若a=log2x,b=$\frac{2}{x}$,則“a>b”是“x>1”的( 。
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊答案