已知命題p:方程數(shù)學(xué)公式+數(shù)學(xué)公式=1的圖象是焦點(diǎn)在y軸上的雙曲線;命題q:方程4x2+4(m-2)x+1=0無實(shí)根;又 p∨q為真,¬q為真,求實(shí)數(shù)m的取值范圍.

解:∵方程+=1是焦點(diǎn)在y軸上的雙曲線,
∴2-m<0,且m-1>0.即m>2.故命題p:m>2;
∵方程4x2+4(m-2)x+1=0無實(shí)根,∴△=16(m-2)2-16<0,解得1<m<3.故命題q:1<m<3.
∵又 p∨q為真,¬q為真,∴p真q假.
,此時m≥3;…(11分)
綜上所述:實(shí)數(shù)m的取值范圍{m|m≥3}.
分析:根據(jù)p∨q為真,¬q為真,可得命題p為真與命題q為假,再討論實(shí)數(shù)m的取值范圍,最后綜合討論結(jié)果,可得答案.
點(diǎn)評:本題考查的知識點(diǎn)是復(fù)合命題的真假,雙曲線的標(biāo)準(zhǔn)方程和二次方程根的個數(shù)判斷,難度不大,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知命題P:方程
x2
3+a
-
y2
a-1
=1
表示雙曲線,命題q:點(diǎn)(2,a)在圓x2+(y-1)2=8的內(nèi)部.若pΛq為假命題,?q也為假命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題P:方程x2+mx+1=0有兩個不相等的負(fù)實(shí)數(shù)根;命題Q:函數(shù)f(x)=lg[4x2+(m-2)x+1]的定義域?yàn)閷?shí)數(shù)集R,若P或Q為真,P且Q為假,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:方程x2+mx+1=0有兩個不等的負(fù)根,命題q:4x2+4(m-2)x+1=0無實(shí)根,P且q為真命題,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:“方程x2+mx+1=0有兩個不相等的負(fù)實(shí)根”;命題q:“函數(shù)f(x)=lg(4x2+mx-2x+1)的值域?yàn)镽”,若p或q為真,p且q為假,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:方程x2+mx+1=0有兩個不等的正實(shí)數(shù)根,命題q:方程4x2+4(m+2)x+1=0無實(shí)數(shù)根.
(1)若p為真命題,求m的取值范圍;
(2)若q為真命題,求m的取值范圍;
(3)若“p或q”為真命題,求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案