19.設(shè)$\overrightarrow{a}$=(10,-4),$\overrightarrow$=(3,1),$\overrightarrow{c}$=(-2,3).
(1)求證:$\overrightarrow$,$\overrightarrow{c}$可以作為表示同一平面內(nèi)的所有向量的一組基底;
(2)用$\overrightarrow$,$\overrightarrow{c}$表示$\overrightarrow{a}$.

分析 (1)根據(jù)基底的概念知,兩個(gè)向量不共線便可作為平面上的一組基底,從而證明$\overrightarrow,\overrightarrow{c}$不共線即可;
(2)可設(shè)$\overrightarrow{a}={λ}_{1}\overrightarrow+{λ}_{2}\overrightarrow{c}$,帶入坐標(biāo)便可得到$\left\{\begin{array}{l}{10=3{λ}_{1}-2{λ}_{2}}\\{-4={λ}_{1}+3{λ}_{2}}\end{array}\right.$,這樣解出λ1,λ2,便可用$\overrightarrow,\overrightarrow{c}$表示出$\overrightarrow{a}$.

解答 解:(1)證明:∵3×3-1×(-2)=11≠0;
∴$\overrightarrow,\overrightarrow{c}$不共線;
∴$\overrightarrow,\overrightarrow{c}$可以作為表示同一平面內(nèi)的所有向量的一組基底;
(2)設(shè)$\overrightarrow{a}={λ}_{1}\overrightarrow+{λ}_{2}\overrightarrow{c}$;
即(10,-4)=λ1(3,1)+λ2(-2,3);
∴$\left\{\begin{array}{l}{10=3{λ}_{1}-2{λ}_{2}}\\{-4={λ}_{1}+3{λ}_{2}}\end{array}\right.$;
解得,$\left\{\begin{array}{l}{{λ}_{1}=2}\\{{λ}_{2}=-2}\end{array}\right.$;
∴$\overrightarrow{a}=2\overrightarrow-2\overrightarrow{c}$.

點(diǎn)評(píng) 考查平面上的基底的概念,根據(jù)坐標(biāo)證明兩向量不共線的方法,以及向量坐標(biāo)的加法和數(shù)乘運(yùn)算.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.設(shè)函數(shù)f(x)=4sin(ωx+$\frac{π}{4}$)(ω>0)的最小正周期為π,設(shè)向量$\overrightarrow{a}$=(-1,f(x)),$\overrightarrow$=(f(-x),1),g(x)=$\overrightarrow{a}$•$\overrightarrow$.
(1)求函數(shù)f(x)的遞增區(qū)間;
(2)求函數(shù)g(x)在區(qū)間[$\frac{π}{8}$,$\frac{π}{3}$]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.當(dāng)x=0時(shí),函數(shù)f(x)=$\frac{1}{2}$(ex+e-x)取得極小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.下列說法正確的是( 。
A.若直線l平行于平面α內(nèi)的無數(shù)條直線,則l∥α
B.若直線a在平面α外,則a∥α
C.若直線a∥b,b?α,則a∥α
D.若直線a∥b,b?α,則直線a平行于平面α內(nèi)的無數(shù)條直線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的漸近線方程為y=±$\sqrt{3}$x,左、右焦點(diǎn)分別為F1((-c,0),F(xiàn)2(c,0).且雙曲線被直線x=-c所截得的弦長為6.
(1)求雙曲線C的方程;
(2)若過F2且傾斜角為135°的直線l交C于A,B兩點(diǎn),求△F1AB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知圓C:x2+y2-2x+4y=0,若直線l:y=k(x-3).
(1)若直線l過圓C的圓心,求直線l在y軸上的截距;
(2)若圓C被直線l截得的弦長大于4,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.是否存在同時(shí)滿足下列條件的雙曲線,若存在,求出其方程;若不存在,說明理由.
(1)漸近線方程是x±2y=0;
(2)點(diǎn)A(5,0)到雙曲線上的動(dòng)點(diǎn)P的距離的最小值為$\sqrt{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知雙曲線3x2-y2=3,過P(2,1)點(diǎn)作一直線交雙曲線于A、B兩點(diǎn),若P為AB的中點(diǎn).
(1)求直線AB的方程;
(2)求弦AB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=ax2-(a+2)x+lnx.
(1)當(dāng)a=1時(shí),求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)若函數(shù)f(x)在x=1時(shí)取得極值,求函數(shù)f(x)的單調(diào)區(qū)間;
(3)若對(duì)?x1,x2∈(0,+∞),且x1≠x2,$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}>-2$恒成立,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案